Potassium Ferrite as Heterogeneous Photo-Fenton Catalyst for Highly Efficient Dye Degradation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterisation
2.2. Photo-Fenton MB Degradation
2.2.1. Effect of Catalyst Size
2.2.2. Effect of pH Value
2.2.3. Effect of H2O2 Dose
2.2.4. Dynamic Degradation
2.2.5. Total Organic Carbon
2.2.6. Universal Applicability of Catalyst
2.2.7. Trapping Experiments
2.3. Possible Photo-Fenton Catalytic Mechanism
2.4. Reusability and Chemical Stability
3. Materials and Methods
3.1. Materials
3.2. Preparation
3.3. Material Characterisation
3.4. MB Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jegatheesan, V.; Pramanik, B.K.; Chen, J.Y.; Navaratna, D.; Chang, C.Y.; Shu, L. Treatment of textile wastewater with membrane bioreactor: A critical review. Bioresour. Technol. 2016, 204, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Megala, S.; Prabhu, S.; Harish, S.; Navaneethan, M.; Sohila, S.; Ramesh, R. Enhanced photocatalytic dye degradation activity of carbonate intercalated layered Zn, ZnNi and ZnCu hydroxides. Appl. Surf. Sci. 2019, 481, 385–393. [Google Scholar] [CrossRef]
- Phaltane, S.A.; Vanalakar, S.A.; Bhat, T.S.; Patil, P.S.; Sartale, S.D.; Kadam, L.D. Photocatalytic degradation of methylene blue by hydrothermally synthesized CZTS nanoparticles. J. Mater. Sci. Mater. Electron. 2017, 28, 8186–8191. [Google Scholar] [CrossRef]
- Hachem, C.; Bocquillon, F.; Zahraa, O.; Bouchy, M. Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes Pigments 2001, 49, 117–125. [Google Scholar] [CrossRef]
- Zhou, T.; Lu, X.H.; Wang, J.; Wong, F.S.; Li, Y.Z. Rapid decolorization and mineralization of simulated textile wastewater in a heterogeneous Fenton like system with/without external energy. J. Hazard. Mater. 2009, 165, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Mahamallik, P.; Pal, A. Degradation of textile wastewater by modified photo-Fenton process: Application of Co(II) adsorbed surfactant-modified alumina as heterogeneous catalyst. J. Environ. Chem. Eng. 2017, 5, 2886–2893. [Google Scholar] [CrossRef]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Gogate, P.R.; Pandit, A.B. A review of imperative technologies for wastewater treatment II: Hybrid methods. Adv. Environ. Res. 2004, 8, 553–597. [Google Scholar] [CrossRef]
- El-Khouly, S.M.; Fathy, N. Multi-walled carbon nanotubes supported amorphous Fe2O3 and Ag2O–Fe2O3 as Fenton catalysts for degradation of maxilon red dye. Asia-Pac. J. Chem. Eng. 2018, 13, e2184. [Google Scholar] [CrossRef]
- Teodoro, A.; Boncz, M.Á.; Júnior, A.M.; Paulo, P.L. Disinfection of greywater pre-treated by constructed wetlands using photo-Fenton: Influence of pH on the decay of Pseudomonas aeruginosa. J. Environ. Chem. Eng. 2014, 2, 958–962. [Google Scholar] [CrossRef]
- Guo, X.; Wang, D. Photo-Fenton degradation of methylene blue by synergistic action of oxalic acid and hydrogen peroxide with NiFe2O4 hollow nanospheres catalyst. J. Environ. Chem. Eng. 2019, 7, 102814. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zhao, H.Y.; Li, M.F.; Fan, J.Q.; Zhao, G.H. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl. Catal. B Environ. 2014, 147, 534–545. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Zhang, N.S.; Wang, T.T.; Huang, H.T.; Chen, Y.; Li, Z.S.; Zou, Z.G. Heterogeneous degradation of organic contaminants in the photo-Fenton reaction employing pure cubic β-Fe2O3. Appl. Catal. B Environ. 2019, 245, 410–419. [Google Scholar] [CrossRef]
- Hu, Z.; Oh, W.-D.; Liu, Y.; Yang, E.-H.; Lim, T.-T. Controllable mullite bismuth ferrite micro/nanostructures with multifarious catalytic activities for switchable/hybrid catalytic degradation processes. J. Colloid. Interf. Sci. 2018, 509, 502–514. [Google Scholar] [CrossRef]
- Kuang, Q.; Yang, S. Template Synthesis of Single-Crystal-Like Porous SrTiO3 Nanocube Assemblies and Their Enhanced Photocatalytic Hydrogen Evolution. ACS Appl. Mater. Interfaces. 2013, 5, 3683–3690. [Google Scholar] [CrossRef]
- Chou, T.P.; Zhang, Q.; Russo, B.; Fryxell, G.E.; Cao, G. Titania Particle Size Effect on the Overall Performance of Dye-Sensitized Solar Cells. J. Phys. Chem. C 2007, 111, 6296–6302. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Inada, H.; Wu, L.; Zhu, Y.; Choi, Y.; Liu, P.; Zhou, W.-P.; Adzic, R.R. Oxygen Reduction on Well-Defined Core−Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects. J. Am. Chem. Soc. 2009, 131, 17298–17302. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Verma, A.; Stellacci, F. Effect of Surface Properties on Nanoparticle–Cell Interactions. Small 2010, 6, 12–21. [Google Scholar] [CrossRef]
- Huang, X.P.; Chen, Y.; Walter, E.; Zong, M.R.; Wang, Y.; Zhang, X.; Qafoku, O.; Wang, Z.M.; Rosso, K.M. Facet-Specific Photocatalytic Degradation of Organics by Heterogeneous Fenton Chemistry on Hematite Nanoparticles. ACS Catal. 2019, 53, 10197–10207. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Q.; Duan, F.F.; Zhao, S.C.; Wang, W.K.; Yang, F.; Nuansingc, W.; Zhang, B.Y.; Qin, Y.; Knez, M. Porous Fe2O3 nanotubes with α-γ phase junction for enhanced charge separation and photocatalytic property produced by molecular layer deposition. Appl. Catal. B Environ. 2019, 248, 218–225. [Google Scholar] [CrossRef]
- Huang, Y.; Han, C.; Liu, Y.Q.; Nadagouda, M.N.; Machala, L.; O’Shea, K.E.; Sharma, V.K.; Dionysiou, D.D. Degradation of atrazine by ZnxCu1−xFe2O4 nanomaterial-catalyzed sulfite under UV–vis light irradiation: Green strategy to generate SO4−. Appl. Catal. B Environ. 2018, 221, 380–392. [Google Scholar] [CrossRef]
- Rusevova, K.; Köferstein, R.; Rosell, M.; Richnow, H.H.; Kopinke, F.-D.; Georgi, A. LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions. Chem. Eng. J. 2014, 239, 322–331. [Google Scholar] [CrossRef]
- Hu, Z.T.; Chen, Z.; Goei, R.; Wu, W.Y.; Lim, T.K. Magnetically recyclable Bi/Fe-based hierarchical nanostructures via self-assembly for environmental decontamination. Nanoscale 2016, 8, 12736–12746. [Google Scholar] [CrossRef]
- Yao, Y.J.; Cai, Y.M.; Lu, F.; Wei, F.Y.; Wang, X.Y.; Wang, S.B. Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. J. Hazard. Mater. 2014, 270, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Jauhar, S.; Singhal, S.; Dhiman, M. Manganese substituted cobalt ferrites as efficient catalysts for H2O2 assisted degradation of cationic and anionic dyes: Their synthesis and characterization. Appl. Catal. A Gen. 2014, 486, 210–218. [Google Scholar] [CrossRef]
- Chen, W.; Xiong, L.S.; Chen, F.X. Solvothermal synthesis of sub-200 nm Fe3O4 submicrospheres with enhanced catalytic performances by using acicular goethite as solid precursor. Micro Nano Lett. 2017, 9, 711–713. [Google Scholar] [CrossRef]
- Zhu, J.N.; Zhu, X.Q.; Cheng, F.F.; Li, P.; Wang, F.; Xiao, Y.W.; Xiong, W.W. Preparing copper doped carbon nitride from melamine templated crystalline copper chloride for Fenton-like catalysis. Appl. Catal. B Environ. 2019, 256, 117830. [Google Scholar] [CrossRef]
- Borthakur, S.; Saikia, L. ZnFe2O4@g-C3N4 nanocomposites: An efficient catalyst for Fenton-like photodegradation of environmentally pollutant Rhodamine B. J. Environ. Chem. Eng. 2019, 7, 103035. [Google Scholar] [CrossRef]
- Huang, S.Q.; Zhang, Q.; Liu, P.Y.; Ma, S.J.; Xie, B.; Yang, K.; Zhao, Y.P. Novel up-conversion carbon quantum dots/α-FeOOH nanohybrids eliminate tetracycline and its related drug resistance in visible-light responsive Fenton system. Appl. Catal. B Environ. 2019, 263, 118336. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Jin, W.; Zhao, Y.P.; Zhang, G.S.; Zhang, W. Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl. Catal. B Environ. 2017, 206, 642–652. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhu, Y.; Yang, D.; Zhao, L.; Ding, H.M.; Wang, Z.H. The mixed marriage of copper and carbon ring-g-C3N4 nanosheet: A visible-light-driven heterogeneous Fenton-like catalyst. Appl. Surf. Sci. 2019, 488, 728–738. [Google Scholar] [CrossRef]
- Yuan, H.M.; Li, H.; Zhang, T.S.; Li, G.H.; He, T.M.; Du, F.; Feng, S.H. A K2Fe4O7 superionic conductor for all-solid-state potassium metal batteries. J. Mater. Chem. A 2018, 6, 8413–8418. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, X.; Hu, F.L.; Zou, H.H.; Li, X.J. A new 1-D extended vanadoborate containing triply bridged metal complex units. Inorg. Chem. Commun 2012, 25, 51–54. [Google Scholar] [CrossRef]
- Guo, X.J.; Wang, K.B.; Li, D.; Jia, J.B. Heterogeneous photo-Fenton processes using graphite carbon coating hollow CuFe2O4 spheres for the degradation of methylene blue. Appl. Surf. Sci. 2017, 420, 792–801. [Google Scholar] [CrossRef]
- Wongso, V.; Chen, C.J.; Razzaq, A.; Kamal, N.A.; Sambudi, N.S. Hybrid kaolin/TiO2 composite: Effect of urea addition towards an efficient photocatalyst for dye abatement under visible light irradiation. Appl. Clay Sci. 2019, 180, 105158. [Google Scholar] [CrossRef]
- Wolski, L.; Walkowiak, A.; Ziolek, M. Formation of reactive oxygen species upon interaction of Au/ZnO with H2O2 and their activity in methylene blue degradation. Catal. Today 2019, 333, 54–62. [Google Scholar] [CrossRef]
- Wang, X.T.; Zhou, J.Q.; Zhao, S.; Chen, X.; Yu, Y. Synergistic effect of adsorption and visible-light photocatalysis for organic pollutant removal over BiVO4/carbon sphere nanocomposites. Appl. Surf. Sci. 2018, 453, 394–404. [Google Scholar] [CrossRef]
- Wang, D.J.; Shen, H.D.; Guo, L.; Wang, C.; Fu, F. Porous BiOBr/Bi2MoO6 Heterostructures for Highly Selective Adsorption of Methylene Blue. ACS Omega. 2016, 1, 566–577. [Google Scholar] [CrossRef] [Green Version]
- Brown, I.D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallogr. Sect. B Struct. Sci. 1985, 41, 244–247. [Google Scholar] [CrossRef] [Green Version]
- Keene, T.D.; D’Alessandro, D.M.; Krämer, K.W.; Price, J.R.; Price, D.J.; Decurtins, S.; Kepert, C.J. [V16O38(CN)]9–: A Soluble Mixed-Valence Redox-Active Building Block with Strong Antiferromagnetic Coupling. Inorg. Chem. 2012, 51, 9192–9199. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.J.; Yan, Y.; Wang, Y.Y.; Li, Y.; Li, J.Y.; Yu, J.H. High proton conduction in a new alkali metal-templated open-framework aluminophosphate. Chem. Commun. 2015, 51, 9317–9319. [Google Scholar] [CrossRef] [PubMed]
- Gui, D.X.; Zheng, T.; Xie, J.; Cai, Y.W.; Wang, Y.X.; Chen, L.H.; Diwu, J.; Chai, Z.F.; Wang, S. Significantly Dense Two-Dimensional Hydrogen-Bond Network in a Layered Zirconium Phosphate Leading to High Proton Conductivities in Both Water-Assisted Low-Temperature and Anhydrous Intermediate-Temperature Regions. Inorg. Chem. 2016, 55, 12508–12511. [Google Scholar] [CrossRef] [PubMed]
- Slade, R.C.T.; Hardwick, A.; Dickens, P.G. Investigation of H + motion in NAFION film by pulsed 1H NMR and A.C. conductivity measurements. Solid State Ion. 1983, 9, 1093–1098. [Google Scholar] [CrossRef]
- Bernard, L.; Fitch, A.; Wright, A.F.; Fender, B.E.F.; Howe, A.T. Mechanisms of hydrogen diffusion and conduction in DUO2AsO4·4D2O as inferred from neutron diffraction evidence. Solid State Ion. 1981, 5, 459–462. [Google Scholar] [CrossRef]
- Dey, C.; Kundu, T.; Banerjee, R. Reversible phase transformation in proton conducting Strandberg-type POM based metal organic material. Chem. Commun. 2012, 48, 266–268. [Google Scholar] [CrossRef]
- Yang, T.; Sun, J.L.; Eriksson, L.; Li, G.B.; Zou, X.D.; Liao, F.H.; Lin, J.H. Na5[MB24O34(OH)12]·nH2O (M = Cr3+, Al3+): Unprecedented Spherelike Polyborate Clusters from Boric Acid Flux Synthesis. Inorg. Chem. 2008, 47, 3228–3233. [Google Scholar] [CrossRef]
Catalyst | Reaction Condition | Degradation Rate | Time | Reference |
---|---|---|---|---|
NiFe2O4 | [Catalyst] = 0.2 g/L, [H2O2] = 5 mM, [MB] = 30 mg/L and light irradiation | 98.5% | 50 min | [11] |
Fe3O4 | [Catalyst] = 4 g/L, [H2O2] = 50 mM, [MB] = 100 mg/L, and UV irradiation | 20% | 60 min | [14] |
α-Fe2O3 | [Catalyst] = 0.025 g/L, [H2O2] = 1.10 mM, [MB] = 40 mg/L and UV irradiation | 94.7% | 80 min | [12] |
CuFe2O4 | [Catalyst] = 0.1 g/L, [H2O2] = 20 mM, [MB] = 30 mg/L and light irradiation | 80% | 80 min | [36] |
ZnO | [Catalyst] = 0.02 g/L, [H2O2] = 5 mM, [MB] = 20 mg/L and light irradiation | 4.1% | 60 min | [37] |
TiO2 | [Catalyst] = 1.0 g/L, [MB] = 50 mg/L and light irradiation | 30% | 60 min | [38] |
K2Fe4O7 | [Catalyst] = 0.03 g/L, [H2O2] = 5 mM, [MB] = 20 mg/L and light irradiation | 100% | 35 min | This article |
S (m2/g) | k (min−1) | |
---|---|---|
KFO-20 | 63.79 | 0.155 |
KFO-80 | 9.63 | 0.007 |
KFO-180 | 0.42 | 0.006 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Geng, Z.; Jian, J.; He, Y.; Lv, Z.; Liu, X.; Yuan, H. Potassium Ferrite as Heterogeneous Photo-Fenton Catalyst for Highly Efficient Dye Degradation. Catalysts 2020, 10, 293. https://doi.org/10.3390/catal10030293
Zhang X, Geng Z, Jian J, He Y, Lv Z, Liu X, Yuan H. Potassium Ferrite as Heterogeneous Photo-Fenton Catalyst for Highly Efficient Dye Degradation. Catalysts. 2020; 10(3):293. https://doi.org/10.3390/catal10030293
Chicago/Turabian StyleZhang, Xinghui, Zhibin Geng, Juan Jian, Yiqiang He, Zipeng Lv, Xinxin Liu, and Hongming Yuan. 2020. "Potassium Ferrite as Heterogeneous Photo-Fenton Catalyst for Highly Efficient Dye Degradation" Catalysts 10, no. 3: 293. https://doi.org/10.3390/catal10030293
APA StyleZhang, X., Geng, Z., Jian, J., He, Y., Lv, Z., Liu, X., & Yuan, H. (2020). Potassium Ferrite as Heterogeneous Photo-Fenton Catalyst for Highly Efficient Dye Degradation. Catalysts, 10(3), 293. https://doi.org/10.3390/catal10030293