Stabilization of Fast Pyrolysis Liquids from Biomass by Mild Catalytic Hydrotreatment: Model Compound Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Reduced Catalyst
2.1.1. Textural Properties and Elemental Composition
2.1.2. H2-Temperature Programmed Reduction (H2-TPR)
2.1.3. X-Ray Diffraction (XRD)
2.1.4. X-Ray Photoelectron Spectroscopy (XPS)
2.1.5. Transmission Electron Microscopy (TEM) and High-Resolution TEM (HRTEM)
2.2. Mild Catalytic Hydrogenation of Single Model Compounds
2.2.1. Reaction Pathway Analysis
2.2.2. Reaction Parameter Optimization for Improving the Stable Alcohol Selectivity
2.3. Mild Catalytic Hydrotreatment of Mixed Model Compounds
2.3.1. The Effect of the Interaction among Mixed Model Compounds in Hydrotreatment
2.3.2. Exploration of the Inhibition of Phenol and Hydroxyacetone in Mixed Model Compound Hydrotreatment
2.3.3. Characterization and Discussion of Used Catalysts
3. Experimental Section
3.1. Materials
3.2. Catalyst Preparation
3.3. Catalyst Characterization
3.3.1. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)
3.3.2. Nitrogen Adsorption–Desorption Isotherm Measurements
3.3.3. H2-Temperature Programmed Reduction (H2-TPR)
3.3.4. X-Ray Diffraction (XRD)
3.3.5. X-Ray Photoelectron Spectroscopy (XPS)
3.3.6. Transmission Electron Microscopy (TEM) and High-Resolution Transmission Electron Microscopy (HRTEM)
3.3.7. Thermogravimetric Analysis (TGA)
3.3.8. Ultraviolet (UV)-Raman
3.4. Catalytic Hydrogenation of Biomass PL Model Compounds
3.5. Product Analysis and Data Interpretation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Panwar, N.L.; Kothari, R.; Tyagi, V. V Thermo chemical conversion of biomass—Eco friendly energy routes. Renew. Sustain. Energy Rev. 2012, 16, 1801–1816. [Google Scholar] [CrossRef]
- Venderbosch, R.H.; Ardiyanti, A.R.; Heeres, H.J.; Yakovlev, V.; Ermakov, D.; Khromova, S.; Parmon, V.; Ermakov, D.Y.; Jakovlev, V.A.; Khromova, S.A.; et al. Hydrotreatment of Vegetal Biomass, Comprises Subjecting Vegetal Biomass to Hydrotreatment in Reactor, Where the Hydrotreatment Comprises Contacting the Biomass in Medium and Metal Oxide or Metal-Metalloid Oxide Catalyst with Hydrogen. WO2012030215-A1, 8 March 2012. [Google Scholar]
- ŁukaszJęczmionek; Porzycka-Semczuk, K. Triglyceride zeoforming—A method for improving the low-temperature properties of second generation bio-components obtained from natural oils. Fuel 2013, 113, 17–23. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Leng, F.; Chen, J.; Qiu, K.; Zhou, J. Separation and enrichment of catechol and sugars from bio-oil aqueous phase. Bioresources 2016, 11, 1707–1720. [Google Scholar] [CrossRef] [Green Version]
- Xiu, S.; Shahbazi, A. Bio-oil production and upgrading research: A review. Renew. Sustain. Energy Rev. 2012, 16, 4406–4414. [Google Scholar] [CrossRef]
- Yin, W.; Kloekhorst, A.; Venderbosch, R.H.; Bykova, M.V.; Khromova, S.A.; Yakovlev, V.A.; Heeres, H.J. Catalytic hydrotreatment of fast pyrolysis liquids in batch and continuous set-ups using a bimetallic Ni–Cu catalyst with a high metal content. Catal. Sci. Technol. 2016, 6, 5899–5915. [Google Scholar] [CrossRef] [Green Version]
- Olarte, M.V.; Zacher, A.H.; Padmaperuma, A.B.; Burton, S.D.; Job, H.M.; Lemmon, T.L.; Swita, M.S.; Rotness, L.J.; Neuenschwander, G.N.; Frye, J.G.; et al. Stabilization of Softwood-Derived Pyrolysis Oils for Continuous Bio-oil Hydroprocessing. Top. Catal. 2015, 59, 55–64. [Google Scholar] [CrossRef]
- Cheng, S.; Wei, L.; Zhao, X.; Julson, J. Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading. Catalysts 2016, 6, 195. [Google Scholar] [CrossRef]
- Baker, E.G.; Elliott, D.C. Catalytic Upgrading of Biomass Pyrolysis Oils. In Research in Thermochemical Biomass Conversion; Bridgwater, A.V., Kuester, J.L., Eds.; Springer: Dordrecht, The Netherlands, 1988; pp. 883–895. ISBN 978-94-009-2737-7. [Google Scholar]
- Gagnon, J.; Kaliaguine, S. Catalytic Hydrotreatment of Vacuum Pyrolysis Oils from Wood. Ind. Eng. Chem. Res. 1988, 27, 1783–1788. [Google Scholar] [CrossRef]
- Lee, H.; Kim, Y.M.; Lee, I.G.; Jeon, J.K.; Jung, S.C.; Do Chung, J.; Choi, W.G.; Park, Y.K. Recent advances in the catalytic hydrodeoxygenation of bio-oil. Korean J. Chem. Eng. 2016, 33, 3299–3315. [Google Scholar] [CrossRef]
- Shu, R.; Li, R.; Lin, B.; Wang, C.; Cheng, Z.; Chen, Y. A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels. Biomass Bioenergy 2020, 132, 105432. [Google Scholar] [CrossRef]
- Kim, H.; Shafaghat, H.; kon Kim, J.; Kang, B.S.; Jeon, J.K.; Jung, S.C.; Lee, I.G.; Park, Y.K. Stabilization of bio-oil over a low cost dolomite catalyst. Korean J. Chem. Eng. 2018, 35, 922–925. [Google Scholar] [CrossRef]
- Soltes, J.; Lin, S.-C.K. Hydroprocessing of Biomass Tars for Liquid Engine Fuels. In Progress in Biomass Conversion; Tillman, D.A., Jahn, E.C., Eds.; Elsevier: Amsterdam, The Netherlands, 1984; Volume 5, pp. 1–68. ISBN 0192-6551. [Google Scholar]
- Pourzolfaghar, H.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. Atmospheric hydrodeoxygenation of bio-oil oxygenated model compounds: A review. J. Anal. Appl. Pyrolysis 2018, 133, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Elliott, D.C.; Baker, E.G. Hydrotreating Biomass Liquids to Produce Hydrocarbon Fuels. In Proceedings of the 10 Annual Symposium on Energy from Biomass and Wastes, Washington, DC, USA, 7 April 1986. [Google Scholar]
- French, R.J.; Stunkel, J.; Black, S.; Myers, M.; Yung, M.M.; Iisa, K. Evaluate Impact of Catalyst Type on Oil Yield and Hydrogen Consumption from Mild Hydrotreating. Energy Fuels 2014, 28, 3086–3095. [Google Scholar] [CrossRef]
- Kadarwati, S.; Oudenhoven, S.; Schagen, M.; Hu, X.; Garcia-Perez, M.; Kersten, S.; Li, C.-Z.; Westerhof, R. Polymerization and cracking during the hydrotreatment of bio-oil and heavy fractions obtained by fractional condensation using Ru/C and NiMo/Al2O3 catalyst. J. Anal. Appl. Pyrolysis 2016, 118, 136–143. [Google Scholar] [CrossRef]
- Stankovikj, F.; Tran, C.-C.; Kaliaguine, S.; Olarte, M.V.; Garcia-Perez, M. Evolution of Functional Groups during Pyrolysis Oil Upgrading. Energy Fuels 2017, 31, 8300–8316. [Google Scholar] [CrossRef]
- Vispute, T.P.; Huber, G.W. Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils. Green Chem. 2009, 11, 1433. [Google Scholar] [CrossRef] [Green Version]
- Sanna, A.; Vispute, T.P.; Huber, G.W. Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts. Appl. Catal. B 2015, 165, 446–456. [Google Scholar] [CrossRef] [Green Version]
- Kusserow, B.; Claus, P. Hydrogenation of Glucose to Sorbitol over Nickel and Ruthenium Catalysts. Adv. Synth. Catal. 2003, 345, 289–299. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, B.; Wang, A.; Li, Z.; Wang, H.; Zhang, T. Kinetic study of the competitive hydrogenation of glycolaldehyde and glucose on Ru/C with or without AMT. AIChE J. 2015, 61, 224–238. [Google Scholar] [CrossRef]
- Luo, D.; Yin, W.; Liu, S.; Yang, N.; Xia, S.; Ma, P. Pyrolysis oil polymerization of water-soluble fraction during accelerated aging. Fuel 2018, 230, 368–375. [Google Scholar] [CrossRef]
- Wang, H.; Male, J.; Wang, Y. Recent Advances in Hydrotreating of Pyrolysis Bio-Oil and Its Oxygen-Containing Model Compounds. ACS Catal. 2013, 3, 1047–1070. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, W.; Zhang, Q.; Wang, T.; Ma, L. Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts. Appl. Energy 2018, 227, 73–79. [Google Scholar] [CrossRef]
- Cheng, T.; Han, Y.; Zhang, Y.; Xu, C. Molecular composition of oxygenated compounds in fast pyrolysis bio-oil and its supercritical fluid extracts. Fuel 2016, 172, 49–57. [Google Scholar] [CrossRef]
- Bindwal, A.B.; Bari, A.H.; Vaidya, P.D. Kinetics of low temperature aqueous-phase hydrogenation of model bio-oil compounds. Chem. Eng. J. 2012, 207–208, 725–733. [Google Scholar] [CrossRef]
- Rodríguez-Aguado, E.; Infantes-Molina, A.; Ballesteros-Plata, D.; Cecilia, J.A.; Barroso-Martín, I.; Rodríguez-Castellón, E. Ni and Fe mixed phosphides catalysts for O-removal of a bio-oil model molecule from lignocellulosic biomass. Mol. Catal. 2017, 437, 130–139. [Google Scholar] [CrossRef]
- Bergem, H.; Xu, R.; Brown, R.C.; Huber, G.W. Low temperature aqueous phase hydrogenation of the light oxygenate fraction of bio-oil over supported ruthenium catalysts. Green Chem. 2017, 19, 3252–3262. [Google Scholar] [CrossRef]
- Wang, C.; Guo, Z.; Yang, Y.; Chang, J.; Borgna, A. Hydrogenation of Furfural as Model Reaction of Bio-Oil Stabilization under Mild Conditions Using Multiwalled Carbon Nanotube (MWNT)-Supported Pt Catalysts. Ind. Eng. Chem. Res. 2014, 53, 11284–11291. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Fang, Z.; Smith, R.L., Jr. Efficient catalytic transfer hydrogenation of biomass-based furfural to furfuryl alcohol with recycable Hf-phenylphosphonate nanohybrids. Catal. Today 2019, 319, 84–92. [Google Scholar] [CrossRef]
- de Souza, P.M.; Rabelo-Neto, R.C.; Borges, L.E.P.; Jacobs, G.; Davis, B.H.; Resasco, D.E.; Noronha, F.B. Hydrodeoxygenation of Phenol over Pd Catalysts. Effect of Support on Reaction Mechanism and Catalyst Deactivation. ACS Catal. 2017, 7, 2058–2073. [Google Scholar] [CrossRef]
- Prasomsri, T.; Shetty, M.; Murugappan, K.; Román-Leshkov, Y. Insights into the catalytic activity and surface modification of MoO3 during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures. Energy Environ. Sci. 2014, 7, 2660. [Google Scholar] [CrossRef]
- Huynh, T.; Armbruster, U.; Kreyenschulte, C.; Nguyen, L.; Phan, B.; Nguyen, D.; Martin, A. Understanding the Performance and Stability of Supported Ni-Co-Based Catalysts in Phenol HDO. Catalysts 2016, 6, 176. [Google Scholar] [CrossRef]
- Si, Z.; Zhang, X.; Wang, C.; Ma, L.; Dong, R. An Overview on Catalytic Hydrodeoxygenation of Pyrolysis Oil and Its Model Compounds. Catalysts 2017, 7, 169. [Google Scholar] [CrossRef] [Green Version]
- Resende, K.A.; Teles, C.A.; Jacobs, G.; Davis, B.H.; Cronauer, D.C.; Kropf, A.J.; Marshall, C.L.; Hori, C.E.; Noronha, F.B. Hydrodeoxygenation of phenol over zirconia supported Pd bimetallic catalysts. The effect of second metal on catalyst performance. Appl. Catal. B 2018, 232, 213–231. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, S.; He, L.; Ning, P.; Guan, Q. Selective Conversion of Phenol in a Subcritical Water Medium Using γ-Al2O3 Supported Ni–Co Bimetallic Catalyst. Catalysts 2019, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Burattin, P.; Che, M.; Louis, C. Molecular Approach to the Mechanism of Deposition−Precipitation of the Ni(II) Phase on Silica. J. Phys. Chem. B 1998, 102, 2722–2732. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, H.; Huang, Z.; Li, S.; Wu, G.; Ma, X.; Gong, J. Hydrogen Production via Steam Reforming of Ethanol on Phyllosilicate-Derived Ni/SiO2: Enhanced Metal–Support Interaction and Catalytic Stability. ACS Sustain. Chem. Eng. 2012, 1, 161–173. [Google Scholar] [CrossRef]
- Yin, W.; Venderbosch, R.H.; He, S.; Bykova, M.V.; Khromova, S.A.; Yakovlev, V.A.; Heeres, H.J. Mono-, bi-, and tri-metallic Ni-based catalysts for the catalytic hydrotreatment of pyrolysis liquids. Biomass Convers. Biorefin. 2017, 7, 361–376. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Liu, D.; Zhao, Y.; Wang, H.; Han, J.; Ge, Q.; Zhu, X. Size Dependence of Vapor Phase Hydrodeoxygenation of m-Cresol on Ni/SiO2 Catalysts. ACS Catal. 2018, 8, 1672–1682. [Google Scholar] [CrossRef]
- Sivaiah, M.V.; Petit, S.; Barrault, J.; Batiot-Dupeyrat, C.; Valange, S. CO2 reforming of CH4 over Ni-containing phyllosilicates as catalyst precursors. Catal. Today 2010, 157, 397–403. [Google Scholar] [CrossRef]
- Melo, M.A.; Airoldi, C. Energetic features of copper and lead sorption by innovative aminoalcohol-functionalized cobalt phyllosilicates. Dalt. Trans. 2010, 39, 10217–10227. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, L.; Lopez, G.; Arregi, A.; Amutio, M.; Artetxe, M.; Bilbao, J.; Olazar, M. Stability of different Ni supported catalysts in the in-line steam reforming of biomass fast pyrolysis volatiles. Appl. Catal. B 2019, 242, 109–120. [Google Scholar] [CrossRef]
- Gong, W.; Chen, C.; Zhang, H.; Zhang, Y.; Zhang, Y.; Wang, G.; Zhao, H. Highly selective liquid-phase hydrogenation of furfural over N-doped carbon supported metallic nickel catalyst under mild conditions. Mol. Catal. 2017, 429, 51–59. [Google Scholar] [CrossRef]
- Lorenz, P.; Finster, J.; Wendt, G.; Salyn, J.V.; Žumadilov, E.K.; Nefedov, V.I. Esca investigations of some NiO/SiO2 and Ni-Al2O3/SiO2 catalysts. J. Electron. Spectros. Relat. Phenomena 1979, 16, 267–276. [Google Scholar] [CrossRef]
- He, J.; Lu, X.H.; Shen, Y.; Jing, R.; Nie, R.F.; Zhou, D.; Xia, Q.H. Highly selective hydrogenation of phenol to cyclohexanol over nano silica supported Ni catalysts in aqueous medium. Mol. Catal. 2017, 440, 87–95. [Google Scholar] [CrossRef]
- Qiu, S.; Xu, Y.; Weng, Y.; Ma, L.; Wang, T. Efficient Hydrogenolysis of Guaiacol over Highly Dispersed Ni/MCM-41 Catalyst Combined with HZSM-5. Catalysts 2016, 6, 134. [Google Scholar] [CrossRef] [Green Version]
- Ertl, G.L.; Hierl, R.; Knözinger, H.; Thiele, N.; Urbach, H.P. XPS study of copper aluminate catalysts. Appl. Surf. Sci. 1980, 5, 49–64. [Google Scholar] [CrossRef]
- Xinghua, Z.; Tiejun, W.; Longlong, M.; Chuangzhi, W. Aqueous-phase catalytic process for production of pentane from furfural over nickel-based catalysts. Fuel 2010, 89, 2697–2702. [Google Scholar] [CrossRef]
- O’Driscoll, Á.; Leahy, J.J.; Curtin, T. The influence of metal selection on catalyst activity for the liquid phase hydrogenation of furfural to furfuryl alcohol. Catal. Today 2017, 279, 194–201. [Google Scholar] [CrossRef]
- Luna, R.; Huan, Z.; Man, Z.; Lihua, Z.; An, P.; Jiexiang, W.; Kai, Y.; Chuanqun, Z.; Suqun, X.; Hui, C.B. A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures. Mol. Catal. 2020, 480, 110639. [Google Scholar]
- Jiménez-Gómez, C.P.; Cecilia, J.A.; Franco-Duro, F.I.; Pozo, M.; Moreno-Tost, R.; Maireles-Torres, P. Promotion effect of Ce or Zn oxides for improving furfuryl alcohol yield in the furfural hydrogenation using inexpensive Cu-based catalysts. Mol. Catal. 2018, 455, 121–131. [Google Scholar] [CrossRef]
- Zhang, H.; Han, A.; Okumura, K.; Zhong, L.; Li, S.; Jaenicke, S.; Chuah, G.-K. Selective hydrogenation of phenol to cyclohexanone by SiO2-supported rhodium nanoparticles under mild conditions. J. Catal. 2018, 364, 354–365. [Google Scholar] [CrossRef]
- Ryymin, E.-M.; Honkela, M.L.; Viljava, T.-R.; Krause, A.O.I. Competitive reactions and mechanisms in the simultaneous HDO of phenol and methyl heptanoate over sulphided NiMo/γ-Al2O3. Appl. Catal. A 2010, 389, 114–121. [Google Scholar] [CrossRef]
- Dwiatmoko, A.A.; Lee, S.; Ham, H.C.; Choi, J.-W.; Suh, D.J.; Ha, J.-M. Effects of Carbohydrates on the Hydrodeoxygenation of Lignin-Derived Phenolic Compounds. ACS Catal. 2014, 5, 433–437. [Google Scholar] [CrossRef]
- Li, C.; Stair, P.C. Coke formation in zeolites studied by a new technique: Ultraviolet resonance Raman spectroscopy. Stud. Surf. Sci. Catal. 1997, 105, 599–606. [Google Scholar]
- Tempelman, C.H.L.; Hensen, E.J.M. On the deactivation of Mo/HZSM-5 in the methane dehydroaromatization reaction. Appl. Catal. B 2015, 176–177, 731–739. [Google Scholar] [CrossRef]
- Shin, M.; Kim, T.; Suh, Y.W. Effect of Glycerol on Coke Characteristics in the Aromatization of Aqueous Glycerol Solution. Top. Catal. 2017, 60, 658–665. [Google Scholar] [CrossRef]
- Huang, X.; Jiao, X.; Lin, M.; Wang, K.; Jia, L.; Hou, B.; Li, D. Coke distribution determines the lifespan of a hollow Mo/HZSM-5 capsule catalyst in CH4 dehydroaromatization. Catal. Sci. Technol. 2018, 8, 5740–5749. [Google Scholar] [CrossRef]
- Sun, K.; Xu, Q.; Shao, Y.; Zhang, L.; Liu, Q.; Zhang, S.; Wang, Y.; Hu, X. Cross-Polymerization between the Typical Sugars and Phenolic Monomers in Bio-Oil: A Model Compounds Study. Energy Fuels 2019, 33, 7480–7490. [Google Scholar] [CrossRef]
Samples | SBET a, m2/g | Pore Volume b, cm3/g | Average Pore Diameter c, nm |
---|---|---|---|
SiO2 | 226.6 | 0.6 | 14.3 |
Ni/SiO2 | 218.2 | 0.9 | 19.2 |
Sample | Ni loading a, wt % | Ni Particle Size, nm | |
---|---|---|---|
Ni/SiO2 | 8.3 ± 0.3 | 3.2 ± 1.6 b | 3 c |
Entry | Reactant a | TOF, mmol/(gcat·h) | ||
---|---|---|---|---|
Hydroxyacetone | Furfural | Phenol | ||
1 | H (1 h) | 652.7 | - | - |
2 | F (1 h) | - | 361.67 | - |
3 | P (1 h) | - | - | 364.2 |
4 | F+P (1 h) | - | 240.3 | 2.6 |
5 | F+P (2 h) | - | 130.1 | 17.4 |
6 | H+P (10 min) | 1900.9 | - | 92.6 |
7 | H+P (1 h) | 337.5 | - | 57.9 |
8 | H+F (1 h) | 59.7 | 167.6 | - |
9 | H+F+P (1 h) | 116.4 | 201.6 | 0.00 |
10 | H+F+P (5 h) | 32.6 | 36.0 | 0.3 |
11 b | P (No.9 used catalyst, 1 h) | - | - | 305.7 |
12 c | P (No.10 used catalyst, 1 h) | - | - | 263.0 |
Samples | M a, wt % | MN2 b, wt % | Mairc, wt % | Carbon Deposition, wt % |
---|---|---|---|---|
Phenol | 5.1 | 7.1 | 7.4 | 0.3 |
Furfural | 6.7 | 8.5 | 9.0 | 0.5 |
Hydroxyacetone | 7.3 | 8.1 | 9.6 | 1.5 |
Mixed | 7.5 | 9.0 | 9.8 | 0.7 |
Model Compounds | Specific Surface Area a, m2/g |
---|---|
Reduced catalyst | 218.2 |
Phenol | 198.5 |
Furfural | 170.3 |
Hydroxyacetone | 172.0 |
Mixed | 180.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Yin, W.; Arslan, A.; Liu, T.; Zheng, Y.; Xia, S. Stabilization of Fast Pyrolysis Liquids from Biomass by Mild Catalytic Hydrotreatment: Model Compound Study. Catalysts 2020, 10, 402. https://doi.org/10.3390/catal10040402
Han D, Yin W, Arslan A, Liu T, Zheng Y, Xia S. Stabilization of Fast Pyrolysis Liquids from Biomass by Mild Catalytic Hydrotreatment: Model Compound Study. Catalysts. 2020; 10(4):402. https://doi.org/10.3390/catal10040402
Chicago/Turabian StyleHan, Depeng, Wang Yin, Ali Arslan, Tongrui Liu, Yan Zheng, and Shuqian Xia. 2020. "Stabilization of Fast Pyrolysis Liquids from Biomass by Mild Catalytic Hydrotreatment: Model Compound Study" Catalysts 10, no. 4: 402. https://doi.org/10.3390/catal10040402
APA StyleHan, D., Yin, W., Arslan, A., Liu, T., Zheng, Y., & Xia, S. (2020). Stabilization of Fast Pyrolysis Liquids from Biomass by Mild Catalytic Hydrotreatment: Model Compound Study. Catalysts, 10(4), 402. https://doi.org/10.3390/catal10040402