Carbon Formation at High Temperatures (550–1400 °C): Kinetics, Alternative Mechanisms and Growth Modes
Abstract
:1. Introduction
2. Kinetic Routes, Alternative Growth Mechanisms
3. Mechanism above ~550 °C: Transition from Hybrid to Pyrolytic Growth
4. HT Deposition: Lower Active Gas Pressure, Faster CNTs Growth Rates
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Palmer, H.B.; Cullis, C.L. The Formation of Carbon from Gases. In Chemistry and Physics of Carbon; Dekker: New York, NY, USA, 1965; Volume 1, pp. 265–325. [Google Scholar]
- Kotlensky, W.V. Deposition of Pyrolytic Carbon in Porous Solids. In Chemistry and Physics of Carbon; Marcel Dekker, Inc.: New York, NY, USA, 1973; Volume 9, pp. 173–262. [Google Scholar]
- Bokros, J.C. Deposition, Structure and Properties of Pyrolytic Carbons. In Chemistry and Physics of Carbon; Dekker: New York, NY, USA, 1969; Volume 5. [Google Scholar]
- Barrer, R.M. Diffusion in and through Solids; Cambridge Univ. Press: Cambridge, UK, 1941. [Google Scholar]
- Walker, P.L.; Rusinko, F.; Austin, I.G. Gas Reactions of Carbon. In Advances in Catalysis; Academic Press: Cambridge, MA, USA, 1959; Volume 11, pp. 133–221. [Google Scholar]
- Slysh, R.S.; Kinney, C.R. Some kinetics of the carbonization of benzene, acetylene and diacetylene at 1200 degree. J. Phys. Chem. 1961, 65, 1044. [Google Scholar] [CrossRef]
- Ford, A.R. Deposition, Structure and Properties of Pyrolytic Carbons. Engineer 1967, 224, 444. [Google Scholar]
- Fischback, D.B. Effect of Substrate Structure on Deposition of Evaporated Carbon. J. Mater. Sci. 1968, 3, 559–561. [Google Scholar] [CrossRef] [Green Version]
- Presland, A.E.B.; Walker, P.L. Growth of single-crystal graphite by pyrolysis of acetylene over metals. Carbon 1969, 7, 1–4. [Google Scholar] [CrossRef]
- Khan, M.S.; Crynes, B.L. Survey of Recent Methane Pyrolysis Literature. Ind. Eng. Chem. 1970, 62, 54–59. [Google Scholar] [CrossRef]
- Tesner, P.A.; Robonovich, E.Y.; Rafalkes, I.S.; Arefieva, E.F. Formation of Carbon Fibers from Acetylene. Carbon 1970, 8, 435–442. [Google Scholar] [CrossRef]
- Lobo, L.S.; Trimm, D.L. Complex temperature dependencies of the rate of carbon deposition on nickel. Nat. Phys. Sci. 1971, 234, 15–16. [Google Scholar] [CrossRef]
- Lobo, L.S.; Trimm, D.L. Studies of Carbon Formation on Metals Using a Vacuum Microbalance. In Progress in Vacuum Microbalance Techniques; Heyden & Son: London, UK, 1972; Volume 2. [Google Scholar]
- Baker, R.T.; Barber, M.A.; Harris, P.S.; Feates, F.S.; Waite, R.J. Nucleation and Growth of C Deposits from Ni Catalyzed Decomposition of C2H2. J. Catal. 1972, 26, 51–62. [Google Scholar] [CrossRef]
- Nielsen, J.R.; Trimm, D.L. Mechanism of Carbon Formation on Nickel-Containing Catalysts. J. Catal. 1977, 48, 155–165. [Google Scholar]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Saito, R.; Dresselhause, G.; Dresselhause, M.S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1998. [Google Scholar]
- Harris, P.J.F. Carbon Nanotube Science; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Shaikjee, A.; Coville, N.J. The role of the hydrocarbon source on the growth of carbon materials. Carbon 2012, 50, 3376–3398. [Google Scholar] [CrossRef]
- Fau, G.; Gascoin, N.; Steelant, J. Hydrocarbon pyrolysis with a methane focus: A review on the catalytic effect and the coke production. J. Anal. Appl. Pyrol. 2014, 108, 1–11. [Google Scholar] [CrossRef]
- Ashik, U.P.M.; Wan Daud, W.M.A.; Abas, H.F. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane—A review. Renew. Sustain. Energy Rev. 2015, 44, 221–256. [Google Scholar] [CrossRef] [Green Version]
- Ashik, U.P.M.; Wan Daud, W.M.A.; Hyashi, J.-I. A review on CH4 transformation to H2 and nanocarbon. Renew. Sustain. Energy Rev. 2017, 76, 743–767. [Google Scholar] [CrossRef]
- Janas, D. Towards monochiral carbon nanotubes: A review of progress in the sorting of single-walled CNTs. Mater. Chem. Front. 2018, 2, 36–73. [Google Scholar] [CrossRef]
- Lobo, L.S. Mechanism of Catalytic CNTs Growth in 400–650 °C Range: Explaining Volcano Shape Arrhenius Plot and Catalytic Synergism Using both Pt (or Pd) and Ni, Co or Fe. C J. Carbon Res. 2019, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Lobo, L.S. Catalytic carbon formation: Clarifying the alternative kinetic routes and defining a kinetic linearity for sustained growth concept. Reac. Kinet. Mech. Cat. 2016, 118, 393–414. [Google Scholar] [CrossRef]
- Lobo, L.S. Nucleation and growth of carbon nanotubes and nanofibers: Mechanism and catalytic geometry control. Carbon 2017, 114, 411–417. [Google Scholar] [CrossRef]
- Cunha, A.F.; Orfão, J.J.M.; Figueiredo, J.L. Catalytic decomposition of methane on Raney-type catalysts. Appl. Catal. A 2008, 348, 103–112. [Google Scholar] [CrossRef]
- Figueiredo, J.L.; Orfão, J.J.M.; Cunha, A.F. H2 production via CH4 decomposition on Raney-type catalysts. Int. J. Hydrogen Energy 2010, 35, 9795–9980. [Google Scholar] [CrossRef]
- Ferreira, V.J.; Tavares, P.; Figueiredo, J.L.; Faria, J.L. Ce-Doped La2O3 based catalyst for the oxidative coupling of methane. Catal. Commun. 2013, 42, 50–53. [Google Scholar] [CrossRef]
- Lázaro, M.J.; Pinilla, J.L.; Suelves, I.; Moliner, R. Study of the deactivation mechanism of carbon blacks used in methane decomposition. Int. J. Hydrogen Energy 2008, 33, 4104–4111. [Google Scholar] [CrossRef]
- Emmenegger, C.; Bonard, J.M.; Mauron, P.; Sudan, P.; Lepora, A.; Grobety, B.; Züttel, A.; Schlapbach, L. Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism. Carbon 2003, 41, 539–547. [Google Scholar] [CrossRef]
- Herreyre, S.; Gadelle, P. Effect of H2 on the morphology of C deposited from the catalytic disproportionation of CO. Carbon 1995, 33, 234–237. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Govindaraj, A.; Sen, R.; Satishkumar, B.C. Synthesis of MW and SW nanotubes, aligned-nanotube bundles and nanorods by employing organometallic precursors. Mat. Res. Innovat. 1998, 2, 128–141. [Google Scholar] [CrossRef] [Green Version]
- Guellati, O.; Bégin, D.; Antoni, F.; Moldovan, S.; Guerioune, M.; Pham-Huu, C. CNTs’ array growth using the floting catalyst-CVD method over different substrates and H2 supply. Mater. Sci. Eng. B 2018, 231, 11–17. [Google Scholar] [CrossRef]
- Barreiro, A.; Hampel, S.; Rümmeli, M.H.; Kramberger, C.; Grüneis, A.; Biedermann, K.; Leonhardt, A.; Gemming, T.; Büchner, B.; Bachtold, A.; et al. Thermal decomposition of Ferrocene as a Method for Production of SWCNTs without Additional Carbon Sources. J. Phys. Chem. B 2006, 110, 20973–20977. [Google Scholar] [CrossRef]
- Eres, G.; Kinkhabwala, A.A.; Cui, H.; Geohegan, D.B.; Puretzky, A.A.; Lowndes, D.H. Molecular Beam-Controlled Nucleation and Growth of Vertically Aligned SWCNTs arrays. J. Phys. Chem. B 2005, 109, 16684–16694. [Google Scholar] [CrossRef]
- Latorre, N.; Romeo, E.; Villacampa, J.I.; Cazana, F.; Royo, C.; Monzon, A. Kinetics of CNTs growth on a Ni-Mg-Al catalyst by CCVD of methane: Influence of catalyst deactivation. Catal. Today 2010, 154, 217–223. [Google Scholar] [CrossRef]
- Valiente, A.M.; Lopez, P.N.; Ramos, I.R.; Ruiz, A.G.; Li, C.; Xin, Q. In situ study of CNT formation by C2H2 decomposition on an iron-based catalyst. Carbon 2000, 38, 2003–2006. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Ren, Y.; Wan, Y. Effect of Gas Atmosphere in the Heating Stage on Limiting Nucleation of Graphene on Cu Foils by Low Pressure CVD. Cryst. Res. Technol. 2020. [Google Scholar] [CrossRef]
First Author | Year | Temperature (°C) | Catalyst | Gas | Reference |
---|---|---|---|---|---|
Shaikjee | 2012 | 600–1000 | Fe, Ni, Co | hydrocarbons | [19] |
Fau | 2014 | 500–900 | Pd, Mo, Ni, Fe | CH4 | [20] |
Ashik | 2015 | 550–900 | Fe, Co, Ni, | CH4 | [21] |
Ashik | 2017 | 550–700 | Ni, Co, Fe, Cu | CH4/H2 | [22] |
Janas | 2018 | 400–600 | Co | CO | [23] |
Kinetic Routes | Temperature Range (°C) | Order | Carbon Growth Type | Active Catalysts |
---|---|---|---|---|
I Catalytic | 300/550 low T | 0 | Surface catalysis/ graphene growth | Ni (+Cu) Fe, Co |
II Hybrid | 550/~700 intermediate | 1 | Carbon black atoms dissolve and grow | Pt, Ru, Mo, Ni |
III Pyrolytic | ~600/1200 high T | 1 | Carbon black forms successive layers | No catalysis, shape adjusts |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobo, L.S.; Carabineiro, S.A.C. Carbon Formation at High Temperatures (550–1400 °C): Kinetics, Alternative Mechanisms and Growth Modes. Catalysts 2020, 10, 465. https://doi.org/10.3390/catal10050465
Lobo LS, Carabineiro SAC. Carbon Formation at High Temperatures (550–1400 °C): Kinetics, Alternative Mechanisms and Growth Modes. Catalysts. 2020; 10(5):465. https://doi.org/10.3390/catal10050465
Chicago/Turabian StyleLobo, Luís Sousa, and Sónia A. C. Carabineiro. 2020. "Carbon Formation at High Temperatures (550–1400 °C): Kinetics, Alternative Mechanisms and Growth Modes" Catalysts 10, no. 5: 465. https://doi.org/10.3390/catal10050465
APA StyleLobo, L. S., & Carabineiro, S. A. C. (2020). Carbon Formation at High Temperatures (550–1400 °C): Kinetics, Alternative Mechanisms and Growth Modes. Catalysts, 10(5), 465. https://doi.org/10.3390/catal10050465