Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Catalyst Material
3.2. SCR Performance
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Regulation (EU) 2019/631. Official Journal of the European Union: Brussels, 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R0631 (accessed on 13 May 2020).
- Regulations No 595/2009; Official Journal of the European Union: Brussels, 2009. Available online: https://eur-lex.europa.eu/eli/reg/2009/595/oj (accessed on 13 May 2020).
- Binder, A.J.; Toops, T.J.; Unocic, R.R.; Parks, J.E., II; Dai, S. Low-Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition. Angew. Chem. Int. Ed. 2015, 54, 13263–13267. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, S.; Nilsson, M.; Bäckström, D.; Bergman, S.L.; Bengtsson, E.; Bernasek, S.L.; Pettersson, L.J. Multivariate analysis of the effect of biodiesel-derived contaminants on V2O5-WO3/TiO2 SCR catalysts. Appl. Catal. B Environ. 2016, 183, 377–385. [Google Scholar] [CrossRef]
- Chiodo, V.; Maisano, S.; Zafarana, G.; Urbani, F. Effect of pollutants on biogas steam reforming. Int. J. Hydrog. Energy 2017, 42, 1622–1628. [Google Scholar] [CrossRef]
- Koebel, M.; Strutz, E.O. Thermal and Hydrolytic Decomposition of Urea for Automotive Selective Catalytic Reduction Systems: Thermochemical and Practical Aspects. Ind. Eng. Chem. Res. 2003, 42, 2093–2100. [Google Scholar] [CrossRef]
- Devadas, M.; Kröcher, O.; Elsener, M.; Wokaun, A.; Söger, N.; Pfeifer, M.; Demel, Y.; Mussmann, L. Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5. Appl. Catal. B Environ. 2006, 67, 187–196. [Google Scholar] [CrossRef]
- Hammershøi, P.S.; Jensen, A.D.; Janssens, T.V. Impact of SO2-poisoning over the lifetime of a Cu-CHA catalyst for NH3-SCR. Appl. Catal. B Environ. 2018, 238, 104–110. [Google Scholar] [CrossRef]
- Hammershøi, P.S.; Jangjou, Y.; Epling, W.S.; Jensen, A.D.; Janssens, T.V. Reversible and irreversible deactivation of Cu-CHA NH3-SCRcatalysts by SO2 and SO3. Appl. Catal. B Environ. 2018, 226, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Lezcano-Gonzalez, I.; Deka, U.; van der Bij, H.; Paalanen, P.; Arstad, B.; Weckhuysen, B.; Beale, A. Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH3-SCR) systems. Appl. Catal. B Environ. 2014, 154–155, 339–349. [Google Scholar] [CrossRef]
- Shan, Y.; Shi, X.; Yan, Z.; Liu, J.; Yu, Y.; He, H. Deactivation of Cu-SSZ-13 in the presence of SO2 during hydrothermal aging. Catal. Today 2019, 320, 84–90. [Google Scholar] [CrossRef]
- Kamata, H.; Takahashi, K.; Odenbrand, I. Surface acid property and its relation to SCR activity of phosphorus added to commercial V2O5(WO3)/TiO2 catalyst. Catal. Lett. 1998, 53, 65–71. [Google Scholar] [CrossRef]
- Klimczak, M.; Kern, P.; Heinzelmann, T.; Lucas, M.; Claus, P. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts—Part I: V2O5–WO3/TiO2 catalysts. Appl. Catal. B Environ. 2010, 95, 39–47. [Google Scholar] [CrossRef]
- Nicosia, D.; Czekaj, I.; Kröcher, O. Chemical deactivation of V2O5/WO3–TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution: Part II. Characterization study of the effect of alkali and alkaline earth metals. Appl. Catal. B Environ. 2008, 77, 228–236. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Ge, M. The poisoning effect of alkali metals doping over nanoV2O5–WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chem. Eng. J. 2011, 170, 531–537. [Google Scholar] [CrossRef]
- Blakeman, P.; Arnby, K.; Marsh, P.; Newman, C.; Smedler, G. Optimization of an SCR Catalyst System to Meet EUIV Heavy Duty Diesel Legislation. In Proceedings of the 2008 SAE International Powertrains, Fuels and Lubricants Congress, Berlin, Germany, 16–18 June 2008. [Google Scholar] [CrossRef]
- Granestrand, J.; Dahlin, S.; Immele, O.; Schmalhorst, L.; Lantto, C.; Nilsson, M.; París, R.S.; Regali, F.; Pettersson, L.J. Catalytic aftertreatment systems for trucks fueled by biofuels—Aspects on the impact of fuel quality on catalyst deactivation. RSC Catal. 2018, 30, 64–145. [Google Scholar] [CrossRef]
- Kröcher, O.; Elsener, M. Chemical deactivation of V2O5/WO3–TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution: I. Catalytic studies. Appl. Catal. B Environ. 2008, 77, 215–227. [Google Scholar] [CrossRef]
- Blanco, J.; Avila, P.; Barthelemy, C.; Bahamonde, A.; Odriozola, J.; Banda, J.G.D.L.; Heinemann, H. Influence of phosphorus in vanadium-containing catalysts for NOx removal. Appl. Catal. 1989, 55, 151–164. [Google Scholar] [CrossRef]
- Castellino, F.; Rasmussen, S.B.; Jensen, A.D.; Johnsson, J.E.; Fehrmann, R. Deactivation of vanadia-based commercial SCR catalysts by polyphosphoric acids. Appl. Catal. B Environ. 2008, 83, 110–122. [Google Scholar] [CrossRef]
- Englund, J.; Xie, K.; Dahlin, S.; Schaefer, A.; Jing, D.; Shwan, S.; Andersson, L.; Carlsson, P.A.; Pettersson, L.J.; Skoglundh, M. Deactivation of a Pd/Pt Bimetallic Oxidation Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation. Catalysts 2019, 9, 1014. [Google Scholar] [CrossRef] [Green Version]
- Iojoiu, E.; Lauga, V.; Abboud, J.; Legros, G.; Bonnety, J.; Da Costa, P.; Schobing, J.; Brillard, A.; Leyssens, G.; Tschamber, V.; et al. Biofuel Impact on Diesel Engine After-Treatment: Deactivation Mechanisms and Soot Reactivity. Emiss. Control Sci. Technol. 2018, 4, 15–32. [Google Scholar] [CrossRef]
- Silversmit, G.; Depla, D.; Poelman, H.; Marin, G.B.; De Gryse, R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom. 2004, 135, 167–175. [Google Scholar] [CrossRef]
- Wu, J.X.; Wang, Z.M.; Ma, M.S.; Li, S. X-ray photoemission studies of praseodymium thin films on SiO2/Si(100). J. Phys. Condens. Matter 2003, 15, 5857–5864. [Google Scholar] [CrossRef]
- Dupin, J.C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319–1324. [Google Scholar] [CrossRef]
- Kannisto, H.; Ingelsten, H.H.; Skoglundh, M. Ag-Al2O3 catalysts for lean NOx reduction—Influence of preparation method and reductant. J. Mol. Catal. A Chem. 2009, 302, 86–96. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; E’Sobol, P.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Campbell, J.L.; Papp, T. Widths of the Atomic K–N7 Levels. At. Data Nucl. Data Tables 2001, 77, 1–56. [Google Scholar] [CrossRef]
Sample Name | Description |
---|---|
SCR fresh | Fresh sample of the SCR catalyst |
SCR1 in | Inlet sample of the first consecutive engine-bench aged SCR catalyst |
SCR1 out | Outlet sample of the first consecutive engine-bench aged SCR catalyst |
SCR3 in | Inlet sample of the third and last consecutive engine-bench aged SCR catalyst |
SCR3 out | Outlet sample of the third and last consecutive engine-bench aged SCR catalyst |
DPF in | Inlet sample of the engine-bench aged DPF |
DPF out | Outlet sample of the engine-bench aged DPF |
Sample | Desorbed Amount of NH3 [% of SCR Fresh] | Tmax [°C] | |
---|---|---|---|
SCR fresh | 100 | 236 | |
SCR1 in | 76 | 253 | |
SCR1 out | 48 | 229 | |
SCR3 in | 87 | 238 | |
SCR3 out | 48 | 226 |
Sample | Phosphorus [%] | Sulfur [ppm] | Calcium [ppm] | Zinc [ppm] |
---|---|---|---|---|
SCR fresh | 0.19 * | 400 | 1.7 | - |
SCR1 in | 0.17 * | 630 | 1.5 | - |
SCR1 out | 0.20 * | 820 | 1.6 | - |
SCR3 in | 0.18 * | 650 | 1.5 | - |
SCR3 out | 0.18 * | 840 | 1.6 | - |
DPF in | 0.06 * | 890 | 380 | 160 |
DPF out | 0.09 * | 1300 | 1000 | 480 |
DOC fresh ** | 0.00 | 0 | 280 | - |
DOC in ** | 0.18 | 2700 | 470 | - |
DOC out ** | 0.04 | 2500 | 320 | - |
Step | NO [vol.-ppm] | NO2 [vol.-ppm] | NH3 [vol.-ppm] | Description |
---|---|---|---|---|
1 | 1000 | - | 1100 | Standard SCR |
2 | 500 | 500 | 1100 | Fast SCR |
3 | 250 | 750 | 1100 | NO2-rich SCR |
4 | - | - | 1000 | NH3 oxidation |
5 | - | - | - | Cooling to 150 °C in pure argon |
6 | - | - | 400 | NH3 adsorption for TPD |
7 | - | - | - | Argon flush |
8 | - | - | - | NH3 desorption at a heating rate of 10 °C/min to 500 °C |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Englund, J.; Dahlin, S.; Schaefer, A.; Xie, K.; Andersson, L.; Shwan, S.; Carlsson, P.-A.; Pettersson, L.J.; Skoglundh, M. Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation. Catalysts 2020, 10, 552. https://doi.org/10.3390/catal10050552
Englund J, Dahlin S, Schaefer A, Xie K, Andersson L, Shwan S, Carlsson P-A, Pettersson LJ, Skoglundh M. Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation. Catalysts. 2020; 10(5):552. https://doi.org/10.3390/catal10050552
Chicago/Turabian StyleEnglund, Johanna, Sandra Dahlin, Andreas Schaefer, Kunpeng Xie, Lennart Andersson, Soran Shwan, Per-Anders Carlsson, Lars J. Pettersson, and Magnus Skoglundh. 2020. "Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation" Catalysts 10, no. 5: 552. https://doi.org/10.3390/catal10050552
APA StyleEnglund, J., Dahlin, S., Schaefer, A., Xie, K., Andersson, L., Shwan, S., Carlsson, P. -A., Pettersson, L. J., & Skoglundh, M. (2020). Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation. Catalysts, 10(5), 552. https://doi.org/10.3390/catal10050552