Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst
Abstract
:1. Introduction
2. Heterogeneous Photocatalysis: Principles
3. Metal Halide Perovskite
3.1. Background on Metal Halide Perovskites
3.2. Perovskites’ Fundamental Structure, Composition and Applications
3.3. Outstanding Properties of MHPs as Photocatalyst
3.3.1. Extended Optical Absorption Range
3.3.2. Direct Generation of Free Charge Carriers
3.3.3. Long-Range Balanced and Ambipolar Charge Carrier Transport Properties
3.3.4. Point-Defect Tolerance and Reduced Recombination Centers
4. Photocatalytic Applications
4.1. Photocatalytic CO2 Reduction
4.2. Photocatalytic H2 Evolution
4.3. Photocatalytic Removal of Organic Contaminants
4.4. Photocatalytic Organic Synthesis
5. Current Limitations and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Arutyunov, V.S.; Lisichkin, V. Energy resources of the 21st century: Problems and forecasts. Can renewable energy sources replace fossil fuels? Russ. Chem. Rev. 2017, 86, 777–804. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Martínez-huitle, C.A.; Rodrigo, M.A. Renewable energies driven electrochemical wastewater/soil decontamination technologies: A critical review of fundamental concepts and applications. Appl. Catal. B Environ. 2020, 270, 118857. [Google Scholar] [CrossRef]
- Wang, W.; Tadé, M.O.; Shao, Z. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015, 44, 5371–5408. [Google Scholar] [CrossRef]
- Veeraboina, P.; Yesuratnam, G.; Sundar, L.S. Estimation of annual solar radiation from measured temperatures by using temperature-based (TB) approach in different cities in India. Sustain. Cities Soc. 2011, 1, 187–194. [Google Scholar] [CrossRef]
- Veeraboina, P.; Yesuratnam Guduri, G. Analysis of yearly solar radiation by using correlations based on ambient temperature: India. Sustain. Cities Soc. 2014, 11, 16–21. [Google Scholar] [CrossRef]
- Matsuoka, M.; Kitano, M.; Takeuchi, M.; Tsujimaru, K.; Anpo, M.; Thomas, J.M. Photocatalysis for new energy production Recent advances in photocatalytic water splitting reactions for hydrogen production. Catal. Today 2007, 122, 51–61. [Google Scholar] [CrossRef]
- Bahnemann, D. Photocatalytic water treatment: Solar energy applications. Sol. Energy 2004, 77, 445–459. [Google Scholar] [CrossRef]
- Taylor, P.; Yunus, I.S.; Kurniawan, A.; Adityawarman, D.; Indarto, A. Nanotechnologies in water and air pollution treatment. Environ. Technol. Rev. 2012, 1, 136–148. [Google Scholar]
- Zhao, J.; Yang, X. Photocatalytic oxidation for indoor air purification: A literature review. Build. Environ. 2003, 38, 645–654. [Google Scholar] [CrossRef]
- Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9, 1–12. [Google Scholar] [CrossRef]
- Mo, J.; Zhang, Y.; Xu, Q.; Lamson, J.J.; Zhao, R. Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmos. Environ. 2009, 43, 2229–2246. [Google Scholar] [CrossRef]
- Herrmann, J.M.; Guillard, C.; Pichat, P. Heterogeneous photocatalysis: An emerging technology for water treatment. Catal. Today 1993, 17, 7–20. [Google Scholar] [CrossRef]
- Martin, D.J.; Reardon, P.J.T.; Moniz, S.J.A.; Tang, J. Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc. 2014, 136, 12568–12571. [Google Scholar] [CrossRef]
- Ni, M.; Leung, M.K.H.; Leung, D.Y.C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 2007, 11, 401–425. [Google Scholar] [CrossRef]
- Xiong, J.; Song, P.; Di, J.; Li, H. Ultrathin structured photocatalysts: A versatile platform for CO2 reduction. Appl. Catal. B Environ. 2019, 256. [Google Scholar] [CrossRef]
- Ye, S.; Wang, R.; Wu, M.Z.; Yuan, Y.P. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl. Surf. Sci. 2015, 358, 15–27. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, Y.; San Martin, J.; Sun, Y.; Zhu, D.; Yan, Y. Lead halide perovskites for photocatalytic organic synthesis. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Friedmann, D.; Hakki, A.; Kim, H.; Choi, W.; Bahnemann, D. Heterogeneous photocatalytic organic synthesi: State-of-the-art and future perspectives. Green Chem. 2016, 18, 5391–5411. [Google Scholar] [CrossRef] [Green Version]
- Suk, J.; Gyu, H.; Sung, J. Heterojunction semiconductors: A strategy to develop efficient photocatalytic materials for visible light water splitting. Catal. Today 2012, 185, 270–277. [Google Scholar] [CrossRef]
- Chen, S.; Huang, D.; Xu, P.; Xue, W.; Lei, L.; Cheng, M.; Wang, R.; Liu, X.; Deng, R. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: Will we stop with photocorrosion? J. Mater. Chem. A 2020, 8, 2286–2322. [Google Scholar] [CrossRef]
- Gao, C.; Wang, J.; Xu, H.; Xiong, Y. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799–2823. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.; Lu, C.; Wang, J.; Chen, Y.; Xu, Z.; Varma, R.S. Selectivity Enhancement in Heterogeneous Photocatalytic Transformations. Chem. Rev. 2017, 117, 1445–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Ravi Anusuyadevi, P.; Aymonier, C.; Luque, R.; Marre, S. Nanostructured materials for photocatalysis. Chem. Soc. Rev. 2019, 48, 3868–3902. [Google Scholar] [CrossRef] [PubMed]
- Lettmann, C.; Hildenbrand, K.; Kisch, H.; Macyk, W.; Maier, W.F. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal. B Environ. 2001, 32, 215–227. [Google Scholar] [CrossRef]
- Ola, O.; Maroto-Valer, M.M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 16–42. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Shen, J.; Zhang, X.; Ng, Y.H.; Huang, J.; Guo, W.; Lin, C.; Lai, Y. Light-Driven Sustainable Hydrogen Production Utilizing TiO2 Nanostructures: A Review. Small Methods 2019, 3, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Kusiak-Nejman, E.; Morawski, A.W. TiO2/graphene-based nanocomposites for water treatment: A brief overview of charge carrier transfer, antimicrobial and photocatalytic performance. Appl. Catal. B Environ. 2019, 253, 179–186. [Google Scholar] [CrossRef]
- Tachikawa, T.; Tojo, S.; Kawai, K.; Endo, M.; Fujitsuka, M.; Ohno, T.; Nishijima, K.; Miyamoto, Z.; Majima, T. Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy. J. Phys. Chem. B 2004, 108, 19299–19306. [Google Scholar] [CrossRef] [Green Version]
- Frank, A.J.; Willner, I.; Goren, Z.; Degani, Y. Improved Charge Separation and Photosensitized H2 Evolution from Water with TiO2 Particles on Colloidal SiO2 Carriers. J. Am. Chem. Soc. 1987, 109, 3568–3573. [Google Scholar] [CrossRef]
- Wang, F.; DiValentin, C.; Pacchioni, G. Rational Band Gap Engineering of WO3 Photocatalyst for Visible light Water Splitting. ChemCatChem 2012, 4, 476–478. [Google Scholar] [CrossRef]
- Khan, M.M.; Ansari, S.A.; Pradhan, D.; Ansari, M.O.; Han, D.H.; Lee, J.; Cho, M.H. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A 2014, 2, 637–644. [Google Scholar] [CrossRef]
- Wang, X.; Bai, L.; Liu, H.; Yu, X.; Yin, Y.; Gao, C. A Unique Disintegration–Reassembly Route to Mesoporous Titania Nanocrystalline Hollow Spheres with Enhanced Photocatalytic Activity. Adv. Funct. Mater. 2018, 28, 1–8. [Google Scholar] [CrossRef]
- Bai, S.; Wang, L.; Li, Z.; Xiong, Y. Facet-Engineered Surface and Interface Design of Photocatalytic Materials. Adv. Sci. 2017, 4, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153. [Google Scholar] [CrossRef]
- Liqiang, J.; Yichun, Q.; Baiqi, W.; Shudan, L.; Baojiang, J.; Libin, Y.; Wei, F.; Honggang, F.; Jiazhong, S. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 2006, 90, 1773–1787. [Google Scholar] [CrossRef]
- Anandan, S.; Ohashi, N.; Miyauchi, M. ZnO-based visible-light photocatalyst: Band-gap engineering and multi-electron reduction by co-catalyst. Appl. Catal. B Environ. 2010, 100, 502–509. [Google Scholar] [CrossRef]
- Marschall, R.; Wang, L. Non-metal doping of transition metal oxides for visible-light photocatalysis. Catal. Today 2014, 225, 111–135. [Google Scholar] [CrossRef]
- Sato, S.; Nakamura, R.; Abe, S. Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl. Catal. A Gen. 2005, 284, 131–137. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, B.; Lu, J.; Wang, Z.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M.H. Hydrogenated titania: Synergy of surface modification and morphology improvement for enhanced photocatalytic activity. Chem. Commun. 2012, 48, 5733–5735. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.Y.; Li, J.H.; Chen, L.L.; Liu, D.Q.; Li, H.Z.; Zheng, Y.; Ding, J. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol. 2009, 189, 426–432. [Google Scholar] [CrossRef]
- Balachandran, S.; Swaminathan, M. Facile fabrication of heterostructured Bi2O3-ZnO photocatalyst and its enhanced photocatalytic activity. J. Phys. Chem. C 2012, 116, 26306–26312. [Google Scholar] [CrossRef]
- Yu, Z.B.; Xie, Y.P.; Liu, G.; Lu, G.Q.; Ma, X.L.; Cheng, H.M. Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2013, 1, 2773–2776. [Google Scholar] [CrossRef]
- Jin, J.; Yu, J.; Guo, D.; Cui, C.; Ho, W. A Hierarchical Z-Scheme CdS-WO3 Photocatalyst with Enhanced CO2 Reduction Activity. Small 2015, 11, 5262–5271. [Google Scholar] [CrossRef]
- Liu, G.; Wang, L.; Yang, H.G.; Cheng, H.M.; Lu, G.Q. Titania-based photocatalysts-Crystal growth, doping and heterostructuring. J. Mater. Chem. 2010, 20, 831–843. [Google Scholar] [CrossRef]
- Snaith, H.J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013, 4, 3623–3630. [Google Scholar] [CrossRef]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Park, N.G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65–72. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, G.; Wang, L.; Irvine, J.T.S. Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 2016, 45, 5951–5984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Chang, W.J.; Lee, C.W.; Park, S.; Ahn, H.Y.; Nam, K.T. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy 2017, 2, 1–8. [Google Scholar] [CrossRef]
- Luo, J. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014, 345, 1593–1596. [Google Scholar] [CrossRef] [PubMed]
- Andrei, V.; Reuillard, B.; Reisner, E. Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems. Nat. Mater. 2020, 19. [Google Scholar] [CrossRef]
- Kong, W.; Rahimi-iman, A.; Bi, G.; Dai, X.; Wu, H. Oxygen Intercalation Induced by Photocatalysis on the Surface of Hybrid Lead-Halide Perovskites Oxygen Intercalation Induced by Photocatalysis on the Surface of Hybrid Lead-halide Perovskites. J. Phys. Chem. C 2016, 120. [Google Scholar] [CrossRef]
- Kato, H.; Kudo, A. Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium. J. Phys. Chem. A 2002, 106, 5029–5034. [Google Scholar] [CrossRef]
- Bard, A.J. Photoelectrochemistry and Heterogeneous Photo-catalysis at Semiconductors. J. Photochem. 1979, 10, 59–75. [Google Scholar] [CrossRef]
- Inoue, Y.; Niiyama, T.; Asai, Y.; Sato, K. Stable Photocatalytic Activity of BaTi4O9 Combined with Ruthenium Oxide for Decomposition of Water. J. Chem. Soc. Chem. Commun. 1992, 579–580. [Google Scholar] [CrossRef]
- Kudo, A.; Tanaka, A.; Domen, K.; Maruya, K.; Aika, K.; Onishi, T. Photocatalytic decomposition of water over NiO-K4Nb6O17 catalyst. J. Catal. 1988, 111, 67–76. [Google Scholar] [CrossRef]
- Kamat, P. V All Solution-Processed Lead Halide Perovskite-BiVO4 Tandem Assembly for Photolytic Solar Fuels Production. J. Am. Chem. Soc. 2015, 137. [Google Scholar] [CrossRef] [Green Version]
- Mathies, F.; Unger, E.; Universität, H.; Physik, I.; Chemie, I.; Adlershof, I.; Zentrum, H.; Straße, B.T. Advances in Inkjet-Printed Metal-Halide PerovskitePhotovoltaic and Optoelectronic Devices Florian. Energy Technol. 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Park, B.; Philippe, B.; Zhang, X.; Rensmo, H.; Boschloo, G.; Johansson, E.M.J. Bismuth Based Hybrid Perovskites A3Bi2I9 (A:Methylammonium or Cesium) for Solar Cell Application. Adv. Mater. 2015, 27, 6806–6813. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Ueda, K.; Kato, H.; Mikami, I. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal. Letters 1998, 53, 229–230. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Wang, T.; Song, J.; Chen, J.; Xue, J.; Dong, Y. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Adv. Mater. 2016, 29. [Google Scholar] [CrossRef]
- Andronic, L.; Isac, L.; Miralles-cuevas, S.; Visa, M.; Oller, I.; Duta, A.; Malato, S. Pilot-plant evaluation of TiO2 and TiO2-based hybrid photocatalysts for solar treatment of polluted water. J. Hazard. Mater. 2016, 320, 469–478. [Google Scholar] [CrossRef]
- Jim, M.; Maldonado, M.I.; Mar, E.; Hern, A.; Saggioro, E. Supported TiO2 solar photocatalysis at semi-pilot scale: Degradation of pesticides found in citrus processing industry wastewater, reactivity and influence of photogenerated species Antonio S anchez. J. Chem. Technol. Biotechnol. 2015, 90, 149–157. [Google Scholar] [CrossRef]
- Shaban, Y.A.; El Sayed, M.A.; El Maradny, A.A.; Al Farawati, R.K.; Al Zobidi, M.I.; Khan, S.U.M. Degradation of Polychlorinated Biphenyls in Seawater Using CM-n-TiO2 Nanoparticles. Int. J. Photoenergy 2016, 2016, 1–7. [Google Scholar] [CrossRef]
- Serpone, N.; Emeline, A.V. Semiconductor Photocatalysis—Past, Present, and Future Outlook. J. Phys. Chem. Lett. 2012, 3, 673–677. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemannt, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, D. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Yasmina, M.; Mourad, K.; Mohammed, S.H.; Khaoula, C. Treatment heterogeneous photocatalysis; Factors influencing the photocatalytic degradation by TiO2. Energy Procedia 2014, 50, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Rose, G. De perowskite, fossili novo. In De Novis Quibusdam Fossilibus Quae in Montibus Uraliis Inveniuntur; Verlagsort: Berlin, Germany, 1839. [Google Scholar]
- Chakhmouradian, A.R.; Woodward, P.M. Celebrating 175 years of perovskite research: A tribute to Roger H. Mitchell. Phys. Chem. Miner. 2014, 41, 387–391. [Google Scholar] [CrossRef]
- Kovalenko, M.V.; Bodnarchuk, M.I. Lead halide perovskite nanocrystals: From discovery to self-assembly and applications. CHIMIA (Aarau) 2017, 71, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Berry, C.R. Structure and optical absorption of AgI microcrystals. Phys. Rev. 1967, 161, 848–851. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; Rainò, G.; Kovalenko, M.V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405. [Google Scholar] [CrossRef]
- Itoh, T.; Kirihara, T. Excitons in CuCI microcrystals embedded in NaCl. J. Lumin. 1984, 32, 120–122. [Google Scholar] [CrossRef]
- Efros, A.L.; Onushchenko, A.A. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 1881, 34, 345–349. [Google Scholar]
- Éfros, A.L. Density of states and interband absorption of light in strongly doped semiconductors. Sov. Phys. Usp. 1974, 16, 789–805. [Google Scholar] [CrossRef]
- Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Park, N.G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 2013, 4, 2423–2429. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, Y.; Zhang, S.; Dai, Y.; Liu, L.; Li, Y.; Chen, Q. Recent advances toward practical use of halide perovskite nanocrystals. J. Mater. Chem. A 2018, 6, 21729–21746. [Google Scholar] [CrossRef]
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef] [PubMed]
- Takeoka, Y.; Asai, K.; Rikukawa, M.; Sanui, K. Incorporation of conjugated polydiacetylene systems into organic—Inorganic quantum-well structures. Chem. Commun. 2001, 1, 2592–2593. [Google Scholar] [CrossRef]
- Kondo, T.; Iwamoto, S.; Hayase, S.; Tanaka, K.; Ishi, J.; Mizuno, M.; Ema, K.; Ito, R. Resonant third-order optical nonlinearity in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 1997, 105, 503–506. [Google Scholar] [CrossRef]
- Schmidt, L.C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H.J.; Galian, R.E.; Pérez-Prieto, J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853. [Google Scholar] [CrossRef]
- Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Grotevent, M.J.; Kovalenko, M.V. Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640. [Google Scholar] [CrossRef]
- Li, X.; Cao, F.; Yu, D.; Chen, J.; Sun, Z.; Shen, Y.; Zhu, Y. All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. Small 2017, 1–24. [Google Scholar] [CrossRef]
- Hoefler, S.F.; Trimmel, G.; Rath, T. Progress on lead-free metal halide perovskites for photovoltaic applications: A review. Monatshefte Fur Chemie 2017, 148, 795–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, T.M.; Thirumal, K.; Soo, H.S.; Mathews, N. Multidimensional Perovskites: A Mixed Cation Approach Towards Ambient Stable and Tunable Perovskite Photovoltaics. ChemSusChem 2016, 9, 2541–2558. [Google Scholar] [CrossRef] [PubMed]
- McClure, E.T.; Ball, M.R.; Windl, W.; Woodward, P.M. Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors. Chem. Mater. 2016, 28, 1348–1354. [Google Scholar] [CrossRef]
- Brennan, M.C.; Draguta, S.; Kamat, P.V.; Kuno, M. Light-Induced Anion Phase Segregation in Mixed Halide Perovskites. ACS Energy Lett. 2018, 3, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S.S.; Ma, T.; et al. CH3NH3SnxPb(1−x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 2014, 5, 1004–1011. [Google Scholar] [CrossRef]
- Yin, W.J.; Shi, T.; Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658. [Google Scholar] [CrossRef]
- Correa-Baena, J.P.; Nienhaus, L.; Kurchin, R.C.; Shin, S.S.; Wieghold, S.; Putri Hartono, N.T.; Layurova, M.; Klein, N.D.; Poindexter, J.R.; Polizzotti, A.; et al. A-Site Cation in Inorganic A3Sb2I9 Perovskite Influences Structural Dimensionality, Exciton Binding Energy, and Solar Cell Performance. Chem. Mater. 2018, 30, 3734–3742. [Google Scholar] [CrossRef]
- Chen, Q.; De Marco, N.; Yang, Y.M.; Song, T.B.; Chen, C.C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355–396. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Fu, L.; Li, S.; Li, H.; Pan, L.; Wang, L.; Chang, B.; Yin, L. Pathways toward high-performance inorganic perovskite solar cells: Challenges and strategies. J. Mater. Chem. A 2019, 7, 20494–20518. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef]
- Liang, J.; Zhao, P.; Wang, C.; Wang, Y.; Hu, Y.; Zhu, G.; Ma, L.; Liu, J.; Jin, Z. CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. J. Am. Chem. Soc. 2017, 139, 14009–14012. [Google Scholar] [CrossRef] [PubMed]
- Pazoki, M.; Jacobsson, T.J.; Hagfeldt, A.; Boschloo, G.; Edvinsson, T. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals. Phys. Rev. B 2016, 93, 1–10. [Google Scholar] [CrossRef]
- Lau, C.F.J.; Deng, X.; Zheng, J.; Kim, J.; Zhang, Z.; Zhang, M.; Bing, J.; Wilkinson, B.; Hu, L.; Patterson, R.; et al. Enhanced performance: Via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. J. Mater. Chem. A 2018, 6, 5580–5586. [Google Scholar] [CrossRef]
- Zou, S.; Liu, Y.; Li, J.; Liu, C.; Feng, R.; Jiang, F.; Li, Y.; Song, J.; Zeng, H.; Hong, M.; et al. Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes. J. Am. Chem. Soc. 2017, 139, 11443–11450. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, Z.; Qiu, L.; Hawash, Z.; Meng, L.; Wu, Z.; Jiang, Y.; Ono, L.K.; Qi, Y. Enhancing Optical, Electronic, Crystalline, and Morphological Properties of Cesium Lead Halide by Mn Substitution for High-Stability All-Inorganic Perovskite Solar Cells with Carbon Electrodes. Adv. Energy Mater. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Jacobsson, T.J.; Pazoki, M.; Hagfeldt, A.; Edvinsson, T. Goldschmidt Rules and Strontium Replacement in Lead Halogen Perovskite Solar Cells: Theory and Preliminary Experiments on CH3NH3SrI3. J. Phys. Chem. C 2015, 119, 25673–25683. [Google Scholar] [CrossRef]
- Cuhadar, C.; Kim, S.G.; Yang, J.M.; Seo, J.Y.; Lee, D.; Park, N.G. All-Inorganic Bismuth Halide Perovskite-Like Materials A3Bi2I9 and A3Bi1.8Na0.2I8.6 (A = Rb and Cs) for Low-Voltage Switching Resistive Memory. ACS Appl. Mater. Interfaces 2018, 10, 29741–29749. [Google Scholar] [CrossRef]
- Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619–2623. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, T.; Schulz, P.; Li, Z.; Li, G.; Kim, D.H.; Guo, N.; Berry, J.J.; Zhu, K.; Zhao, Y. Facile fabrication of large-grain CH3NH3PbI3−x Brx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening. Nat. Commun. 2016, 7, 2–10. [Google Scholar] [CrossRef]
- Noh, J.H.; Im, S.H.; Heo, J.H.; Mandal, T.N.; Seok, S.I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769. [Google Scholar] [CrossRef]
- Hoke, E.T.; Slotcavage, D.J.; Dohner, E.R.; Bowring, A.R.; Karunadasa, H.I.; McGehee, M.D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 2015, 6, 613–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar]
- Kim, H.S.; Lee, C.R.; Im, J.H.; Lee, K.B.; Moehl, T.; Marchioro, A.; Moon, S.J.; Humphry-Baker, R.; Yum, J.H.; Moser, J.E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef]
- McMeekin, D.P.; Sadoughi, G.; Rehman, W.; Eperon, G.E.; Saliba, M.; Hörantner, M.T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Zhang, X.; Deng, J.; Chu, Z.; Jiang, Q.; Meng, J.; Wang, P.; Zhang, L.; Yin, Z.; You, J. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Xing, J.; Quan, L.N.; De Arquer, F.P.G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y.; et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562. [Google Scholar] [CrossRef]
- Cheng, L.; Huang, J.; Shen, Y.; Li, G.; Liu, X.; Li, W.; Wang, Y.; Li, Y.; Jiang, Y.; Gao, F.; et al. Efficient CsPbBr3 Perovskite Light-Emitting Diodes Enabled by Synergetic Morphology Control. Adv. Opt. Mater. 2018, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Jeong, S.; Park, M.; Kim, Y.; Wolf, C.; Lee, C.; Heo, J.H.; Sadhanala, A.; Myoung, N.; Yoo, S.; et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1226. [Google Scholar] [CrossRef]
- Zhao, B.; Bai, S.; Kim, V.; Lamboll, R.; Shivanna, R.; Auras, F.; Richter, J.M.; Yang, L.; Dai, L.; Alsari, M.; et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photonics 2018, 12. [Google Scholar] [CrossRef]
- Chen, K.; Schünemann, S.; Song, S.; Tüysüz, H. Structural effects on optoelectronic properties of halide perovskites. Chem. Soc. Rev. 2018, 47, 7045–7077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Wang, J.; Dong, J.; Lu, F.; Sun, C.; Zhang, Q.; Wang, N. Two-Dimensional Lead-Free Halide Perovskite Materials and Devices. J. Mater. Chem. A 2019, 7, 23563–23576. [Google Scholar] [CrossRef]
- Ou, Q.; Bao, X.; Zhang, Y.; Shao, H.; Xing, G.; Li, X. Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Mater. Sci. 2019, 1, 268–287. [Google Scholar] [CrossRef]
- Brenner, T.M.; Egger, D.A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid organic–inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 2016, 1, 1–16. [Google Scholar] [CrossRef]
- Sutherland, B.R.; Sargent, E.H. Perovskite photonic sources. Nat. Photonics 2016, 10, 295–302. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [Green Version]
- Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681–688. [Google Scholar] [CrossRef]
- Shen, Y.; Cheng, L.; Li, Y.; Li, W.; Chen, J.; Lee, S. High-Efficiency Perovskite Light-Emitting Diodes with Synergetic Outcoupling Enhancement. Adv. Mater. 2019, 1–8. [Google Scholar] [CrossRef]
- Shamsi, J.; Urban, A.S.; Imran, M.; De Trizio, L.; Manna, L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modi fi cations, and Their Optical Properties. Chem. Rev. 2019, 119, 3296–3348. [Google Scholar] [CrossRef] [PubMed]
- Schulz, P.; Edri, E.; Kirmayer, S.; Hodes, G.; Cahenb, D.; Kahn, A. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 2014, 7, 1377–1381. [Google Scholar] [CrossRef]
- Eperon, G.E.; Stranks, S.D.; Menelaou, C.; Johnston, M.B.; Herz, L.M.; Snaith, H.J. Formamidinium lead trihalide: A broadly tunable perovskite for e ffi cient planar heterojunction solar. Energy Environ. Sci. 2014, 7, 982–988. [Google Scholar] [CrossRef]
- Rothlisberger, U. Valence and conduction band tuning in halide perovskites for solar cell applications. J. Mater. Chem. A 2016, 4, 15997–16002. [Google Scholar] [CrossRef]
- Mauri, M.; Dang, Z.; Manna, L.; Brovelli, S. Doped Halide Perovskite Nanocrystals for Reabsorption-Free Luminescent Solar Concentrators. ACS Energy Lett. 2017, 2, 2368–2377. [Google Scholar] [CrossRef]
- Van Der Stam, W.; Geuchies, J.J.; Altantzis, T.; Van Den Bos, K.H.W.; Meeldijk, J.D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; Donega, C.D.M. Highly Emissive Divalent-Ion-Doped Colloidal CsPb1−xMxBr3 Perovskite Nanocrystals through Cation Exchange. J. Am. Chem. Soc. 2017, 139, 4087–4097. [Google Scholar] [CrossRef]
- Liu, M.; Zhong, G.; Yin, Y.; Miao, J.; Li, K.; Wang, C. Aluminum-Doped Cesium Lead Bromide Perovskite Nanocrystals with Stable Blue Photoluminescence Used for Display Backlight. Adv. Sci. 2017, 1–8. [Google Scholar] [CrossRef]
- Pan, G.; Bai, X.; Yang, D.; Chen, X.; Jing, P.; Qu, S.; Zhang, L.; Zhou, D.; Zhu, J.; Xu, W.; et al. Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties. Nano Lett. 2017, 17, 8005–8011. [Google Scholar] [CrossRef]
- Yang, T.C.; Fiala, P.; Jeangros, Q.; Ballif, C. High-Bandgap Perovskite Materials for Multijunction Solar Cells. Joule 2018, 2, 1421–1436. [Google Scholar] [CrossRef] [Green Version]
- Qian, R.; Zong, H.; Schneider, J.; Zhou, G.; Zhao, T.; Li, Y. Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catal. Today 2019, 335, 78–90. [Google Scholar] [CrossRef]
- Rodriguez, J.A. Physical and chemical properties of bimetallic surfaces. Science 1996, 24, 223–287. [Google Scholar] [CrossRef]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, B.; Han, K.; Mul, G. Driving Surface Redox Reactions in Heterogeneous Photocatalysis: The active state of illuminated semiconductor-supported nanoparticles during overall water-splitting. ACS Catal. 2018, 8, 9154–9164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takanabe, K. Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design. ACS Catal. 2017, 7, 8006–8022. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef]
- Sirringhaus, H. Device Physics of Solution-Processed Organic Field-Effect Transistors. Adv. Mater. 2005, 17, 2411–2425. [Google Scholar] [CrossRef]
- Bresolin, B.; Günnemann, C.; Bahnemann, D.W. Pb-Free Cs3Bi2I9 Perovskite as a Visible-Light-Active Photocatalyst for Organic Pollutant Degradation. Nanomaterials 2020, 10, 763. [Google Scholar] [CrossRef]
- Zhou, C.; Lai, C.; Zhang, C.; Zeng, G.; Huang, D.; Cheng, M.; Hu, L.; Xiong, W.; Chen, M.; Wang, J.; et al. Semiconductor/boron nitride composites: Synthesis, properties, and photocatalysis applications. Appl. Catal. B Environ. 2018, 238, 6–18. [Google Scholar] [CrossRef]
- Spasiano, D.; Marotta, R.; Malato, S.; Fernandez-Ibanez, P.; Di Somma, I. Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl. Catal. B Environ. 2015, 171, 90–123. [Google Scholar] [CrossRef]
- Wehrenfennig, C.; Eperon, G.E.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Adv. Mater. 2014, 26, 1584–1589. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, D.; Kunst, M.; Van De Krol, R.; Marchioro, A.; Moehl, T.; Gra, M. charge transfer processes in lead iodide perovskite. Nat. Photonics 2014, 8, 250–255. [Google Scholar] [CrossRef]
- Ma, C.; Wang, H.; Hu, W.; Yu, W.; Sheikh, A.D.; Li, F.; Wu, T. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun. 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, X.; Yang, G.; Zhou, X. Point Defect Effects on Photoelectronic Properties of the Potential Metal-Free C2N Photocatalysts: Insight from First-Principles Computations. J. Phys. Chem. C 2018, 122, 5291–5302. [Google Scholar] [CrossRef]
- Ran, C.; Xu, J.; Gao, W.; Huang, C.; Dou, S. Defects in metal triiodide perovskite materials towards high-performance solar cells: Origin, impact, characterization, and engineering. Chem. Soc. Rev. 2018, 47, 4581–4610. [Google Scholar] [CrossRef] [PubMed]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Guan, M.; Xiao, C.; Zhang, J.; Fan, S.; An, R.; Guan, M.; Xiao, C.; Zhang, J.; Fan, S.; An, R.; et al. Vacancy Associates Promoting Solar-driven Photocatalytic Activity of Ultrathin Bismuth Oxychloride Nanosheets Vacancy Associates Promoting Solar-driven Photocatalytic Activity of Ultrathin Bismuth Oxychloride Nanosheets. J. Am. Chem. Soc. 2013, 135, 10411–10417. [Google Scholar] [CrossRef]
- Gale, J.; Davison, J. Transmission of CO2-safety and economic considerations. Energy 2004, 29, 1319–1328. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, M.; Chen, H.; Liao, J.; Wang, X.; Kuang, D. Enhanced Solar-driven Gaseous CO2 Conversion by CsPbBr3 Nanocrystal/Pd Nanosheet Schottky-junction Photocatalyst. ACS Appl. Energy Mater. 2018, 1, 5083–5089. [Google Scholar] [CrossRef]
- Abanades, J.C.; Rubin, E.S.; Mazzotti, M.; Herzog, H.J. On the climate change mitigation potential of CO2 conversion to fuels. Energy Environ. Sci. 2017, 10, 2491–2499. [Google Scholar] [CrossRef]
- Oschatz, M.; Antonietti, M. A search for selectivity to enable CO2 capture with porous adsorbents. Energy Environ. Sci. 2018, 11, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Balzani, V.; Pacchioni, G.; Prato, M.; Zecchina, A. Solar-driven chemistry: Towards new catalytic solutions for a sustainable world. Sol. Driven Chem. 2019, 30, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, H.; Zhang, H.; Yu, W.; Wang, X.; Zhao, Y.; Zong, X.; Li, C. Dynamic Interaction Between Methylammonium Lead Iodide and TiO2 Nanocrystals Leads to Enhanced Photocatalytic H2 Evolution from HI Splitting. ACS Energy Lett. 2018, 3, 1159–1164. [Google Scholar] [CrossRef]
- Hou, J.; Cao, S.; Wu, Y.; Gao, Z.; Hou, J.; Cao, S.; Wu, Y.; Gao, Z.; Liang, F.; Sun, Y. Inorganic Colloidal Perovskite Quantum Dots Realizing Robust Solar CO2 Reduction. Chem. A Eur. J. 2017, 23, 9481–9485. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xu, Y.-F.; Chen, B.-X.; Kuang, D.-B.; Su, C. Synthesis and Photocatalytic Application of Stable Lead-Free Cs2AgBiBr6 Perovskite Nanocrystals. Small 2018, 14, 1–7. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, M.; Chen, B.; Wang, X.; Chen, H.; Kuang, D.; Su, C. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663. [Google Scholar] [CrossRef]
- Kong, Z.-C.; Liao, J.-F.; Dong, Y.-J.; Xu, Y.-F.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. Core@Shell CsPbBr3@Zeolitic Imidazolate Framework Nanocomposite for Efficient Photocatalytic CO2 Reduction. ACS Energy Lett. 2018, 3, 2656–2662. [Google Scholar] [CrossRef]
- Wan, S.; Ou, M.; Zhong, Q.; Wang, X. Efficient visible-light-driven photocatalyst for CO2 reduction. Chem. Eng. J. 2019, 358, 1287–1295. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Liao, J.; Chen, B.; Chen, H. Composite Photocatalyst with Enhanced Charge Separation and CO2 Fixation. Adv. Mater. Interfaces 2018, 1–8. [Google Scholar] [CrossRef]
- Kim, Y.; Yassitepe, E.; Voznyy, O.; Comin, R.; Walters, G.; Gong, X.; Kanjanaboos, P.; Nogueira, A.F.; Sargent, E.H. Efficient Luminescence from Perovskite Quantum Dot Solids. ACS Appl. Mater. Interfaces 2015, 7, 25007–25013. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. J. Catal. 2013, 308, 168–175. [Google Scholar] [CrossRef]
- Abdellah, M.; El-zohry, A.M.; Antila, L.J.; Windle, C.D.; Reisner, E.; Hammarström, L. Time-Resolved IR Spectroscopy Reveals a Mechanism with TiO2 as a Reversible Electron Acceptor in a TiO2–Re catalyst system for CO2 photoreduction. J. Am. Chem. Soc. 2017, 13, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yuan, H.; Janssen, K.; Solís-fernández, G.; Wang, Y.; Tan, C.Y.X.; Jonckheere, D.; Debroye, E.; Long, J.; Hendrix, J.; et al. Efficient and Selective Photocatalytic Oxidation of Benzylic Alcohols with Hybrid Organic-Inorganic Perovskite Materials. ACS Energy Lett. 2018, 3, 755–759. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wang, P.; Guan, Z.; Liu, J.; Wang, Z.; Zheng, Z.; Jin, S.; Dai, Y.; Whangbo, M.; Huang, B. Enhancing the Photocatalytic Hydrogen Evolution Activity of Mixed-Halide Perovskite CH3NH3PbBr3−xIx Achieved by Bandgap Funneling of Charge Carriers. ACS Catal. 2018, 8, 10349–10357. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, P.; Zhu, X.; Zhang, Q.; Wang, Z.; Liu, Y. Composite of CH3NH3PbI3 with Reduced Graphene Oxide as a Highly Efficient and Stable Visible-Light Photocatalyst for Hydrogen Evolution in Aqueous HI Solution. Adv. Mater. 2018, 1704342, 2–7. [Google Scholar] [CrossRef]
- Crespo-Quesada, M.; Pazos-outo, L.M.; Warnan, J.; Kuehnel, M.F.; Friend, R.H.; Reisner, E. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.; Thi, C.; Mai, K.; Oh, I. Ultra-Stable Photoelectrodes for Solar Water Splitting Based on Organic Metal Halide Perovskite Fabricated by Lift-Off Process. ACS Appl. Mater. Interfaces 2018, 10, 14659–14664. [Google Scholar] [CrossRef]
- Hoang, M.T.; Pham, N.D.; Han, J.H.; Gardner, J.M.; Oh, I. Integrated Photoelectrolysis of Water Implemented On Organic Metal Halide Perovskite Photoelectrode. ACS Appl. Mater. Interfaces 2016, 8, 11904–11909. [Google Scholar] [CrossRef]
- Kim, I.S.; Pellin, M.J.; Martinson, A.B.F. Acid-Compatible Halide Perovskite Photocathodes Utilizing Atomic Layer Deposited TiO2 for Solar-Driven Hydrogen Evolution. ACS Energy Lett. 2019, 4, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Reyes-pérez, F.; Gallardo, J.J.; Aguilar, T.; Alcántara, R.; Fernández-lorenzo, C.; Navas, J. Visible-Light-Enhanced Photocatalytic Activity of Totally Inorganic Halide-Based Perovskite. Chem. Sel. 2018, 3, 10226–10235. [Google Scholar] [CrossRef]
- Qian, X.; Chen, Z.; Yang, X.; Zhao, W.; Liu, C.; Sun, T.; Zhou, D.; Yang, Q.; Wei, G.; Fan, M. Perovskite cesium lead bromide quantum dots: A new ef fi cient photocatalyst for degrading antibiotic residues in organic system. J. Clean. Prod. 2019, 249, 119335. [Google Scholar] [CrossRef]
- Gao, P.; Grätzel, M.; Nazeeruddin, M.K. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 2448–2463. [Google Scholar] [CrossRef]
- Bresolin, B.M.; Ben Hammouda, S.; Sillanpää, M. An Emerging Visible-Light Organic–Inorganic Hybrid Perovskite for Photocatalytic Applications. Nanomaterials 2020, 10, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoop, L.M.; Felser, C.; Cava, R.J. Lone Pair Effect, Structural Distortions, and Potential for Superconductivity in Tl Perovskites. Inorg. Chem. 2013, 52, 5479–5483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beatriz, A.; Vitoreti, F. Photocatalytic and Photoelectrochemical Degradation of Organic Compounds with All-Inorganic Metal Halide Perovskite Quantum Dots. J. Phys. Chem. Lett. 2019, 10, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Schünemann, S.; Tüysüz, H. Inverse Opal Structured Halide Perovskite Photocatalyst. Eur. J. Inorg. Chem. 2018, 2350–2355. [Google Scholar] [CrossRef]
- Ghanbari, M.; Ansari, F.; Salavati-niasari, M. Inorganica Chimica Acta Simple synthesis-controlled fabrication of thallium cadmium iodide nanostructures via a novel route and photocatalytic investigation in degradation of toxic dyes. Inorg. Chim. Acta 2017, 455, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Lin, H.; Tsai, W.; Lin, H.; Hsu, Y.; Tuan, H. Binary halide, ternary perovskite-like, and perovskite-derivative nanostructures: Hot injection synthesis and optical and photocatalytic properties. Nanoscale 2017, 9, 3747–3751. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, Y.; Huang, H.; Liu, X.; Li, Q.; Chen, L.; Xu, D. Stable and Highly Efficient Photocatalysis with Lead-Free Double-Perovskite of Cs2AgBiBr6. Angew. Chemie Int. Ed. 2019, 58, 7263–7267. [Google Scholar] [CrossRef]
- Pu, Y.-C.; Fan, H.-C.; Liu, T.-W.; Chen, J.-W. Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: Interfacial charge carrier dynamics and photocatalysis. J. Mater. Chem. A 2017, 5, 1–33. [Google Scholar] [CrossRef]
- Schünemann, S.; Van Gastel, M.; Tüysüz, H. A CsPbBr3/TiO2 Composite for Visible-Light Driven Photocatalytic Benzyl Alcohol Oxidation. ChemSusChem 2018, 11, 2057–2061. [Google Scholar] [CrossRef]
- Bresolin, B.; Balayeva, N.O.; Granone, L.I.; Dillert, R. Anchoring lead-free halide Cs3Bi2I9 perovskite on UV100-TiO2 for enhanced photocatalytic performance. Sol. Energy Mater. Sol. Cells 2020, 204, 1–11. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Chaudhary, S.P.; Bhattacharyya, S. Lead-Free Metal Halide Perovskite Nanocrystals for Photocatalysis in Water. ChemRxiv 2019. [Google Scholar] [CrossRef]
- Huynh, K.A.; Tri, L.; Nguyen, V.; Vo, D.N.; Thang, Q. Halide perovskite photocatalysis: Progress and perspectives. J. Chem. Technol. Biotechnol. 2020. [Google Scholar] [CrossRef]
- Aamir, M.; Hussain, Z.; Sher, M.; Iqbal, A. Enhanced photocatalytic activity of water stable hydroxyl ammonium lead halide perovskites. Mater. Sci. Semicond. Process. 2017, 63, 6–11. [Google Scholar] [CrossRef]
- Dai, Y.; Tüysüz, H. Lead-free Cs3Bi2Br9 Perovskite as Photocatalyst for Ring-Opening Reactions of Epoxides. ChemSusChem 2019, 12, 2587–2592. [Google Scholar] [CrossRef]
- Romero, N.A.; Nicewicz, D.A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–10166. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Gao, Y.; Meng, Q.; Yu, S.; Weiss, R.G.; Tung, C.; Wu, L. Mechanistic Insights into the Interface-Directed Transformation of Thiols into Disulfides and Molecular Hydrogen by Visible-Light Irradiation of Quantum Dots. Angew. Chemie Int. Ed. 2014, 53, 2085–2089. [Google Scholar] [CrossRef]
- Wu, W.-B.; Wong, Y.-C.; Tan, Z.-K.; Wu, J. Photo-Induced Thiol Coupling and C−H Activation Using Nanocrystalline Lead-Halide Perovskite Catalysts. Catal. Sci. Technol. 2018, 8, 4257–4263. [Google Scholar] [CrossRef]
- Chen, K.; Deng, X.; Dodekatos, G. Photocatalytic Polymerization of 3,4-Ethylenedioxythiophene over Cesium Lead Iodide Perovskite Quantum Dots. J. Am. Chem. Soc. 2017, 139, 12267–12273. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Lin, Y.; Sun, Y.; Beard, M.C.; Yan, Y.; Lin, Y.; Sun, Y.; Beard, M.C.; Yan, Y. Lead-Halide Perovskites for Photocatalytic α-Alkylation of Aldehydes. J. Am. Chem. Soc. 2019, 141, 733–738. [Google Scholar] [CrossRef]
- Wong, Y.; Ng, J.D.A.; Tan, Z. Perovskite-Initiated Photopolymerization for Singly Dispersed Luminescent Nanocomposites. Adv. Mater. 2018, 30, 1800774. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, H.; Zhao, J.; Sol, G.; Roe, M.B.J. C(sp3)-H Bond Activation by Perovskite Solar Photocatalyst Cell. ACS Energy Lett. 2019, 4, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Leng, M.; Yang, Y.; Zeng, K.; Chen, Z.; Tan, Z.; Li, S.; Li, J.; Xu, B.; Li, D.; Hautzinger, M.P.; et al. All-Inorganic Bismuth-Based Perovskite Quantum Dots with Bright Blue Photoluminescence and Excellent Stability. Adv. Funct. Mater. 2017, 1–11. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Zheng, C.; Gao, D.; Huang, W. Advancements in stability of perovskite solar cells: Degradation mechanisms and improvement approaches. RSC Adv. 2016, 6, 38079–38091. [Google Scholar] [CrossRef]
- Hailegnaw, B.; Kirmayer, S.; Edri, E.; Hodes, G.; Cahen, D. Rain on Methyl-Ammonium-Lead-Iodide Based Perovskites: Possible Environmental Effects of Perovskite Solar Cells. J. Phys. Chem. Lett. 2015, 6, 1543–1547. [Google Scholar] [CrossRef] [PubMed]
- Koh, T.M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T.C.; Mathews, N. Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. J. Phys. Chem. C 2014, 118, 16458–16462. [Google Scholar] [CrossRef]
- Wang, S.; Mitzi, D.B.; Feild, C.A.; Guloys, A. Synthesis and Characterization of [NH2C(I)=NH2]3MIs (M = Sn, Pb): Stereochemical Activity in Divalent Tin and Lead Halides Containing Single (1 10) Perovskite Sheets. J. Am. Chem. Soc. 1995, 117, 5297–5302. [Google Scholar] [CrossRef]
- Yu, H.; Wang, F.; Xie, F.; Li, W.; Chen, J.; Zhao, N. The Role of Chlorine in the Formation Process of. Adv. Funct. Mater. 2014, 24, 7102–7108. [Google Scholar] [CrossRef]
- Leijtens, T.; Eperon, G.E.; Noel, N.K.; Habisreutinger, S.N.; Petrozza, A.; Snaith, H.J. Stability of Metal Halide Perovskite Solar Cells. Adv. Energy Mater. 2015, 5, 1–23. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517. [Google Scholar] [CrossRef]
- Lee, J.; Seol, D.; Cho, A.; Park, N. High-Efficiency Perovskite Solar Cells Based on the Black. Adv. Mater. 2014, 6, 1–8. [Google Scholar] [CrossRef]
- Mitzi, D.B. Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc. Dalt. Trans. 2001, 1–12. [Google Scholar] [CrossRef]
- Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Grätzel, C.; Zakeeruddin, S.M.; Röthlisberger, U.; Grätzel, M. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 2016, 9, 656–662. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficien. Energy Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, J.M.; Butler, K.T.; Brivio, F.; Hendon, C.H.; Van Schilfgaarde, M.; Walsh, A. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Lett. 2014, 14, 2584–2590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Tang, S.; Mu, Y.; Wu, L.; Dong, G.; Zhang, M. Engineering a CsPbBr3-based nanocomposite for efficient photocatalytic CO2 reduction: Improved charge separation concomitant with increased activity sites. RSC Adv. 2019, 9, 34342–34348. [Google Scholar] [CrossRef] [Green Version]
- Fabián, A.; Reyes, G.; Rodriguez-pereira, J.; Gonzalez, E.A.; Rueda-P, J.; Ospina, R.; Masi, S.; Yoon, S.J.; Tirado, J.; Agouram, S.; et al. Unravelling the Photocatalytic Behavior of All-Inorganic Mixed Halide Perovskites: The Role of Surface Chemical states. ACS Appl. Mater. Interfaces 2020, 12, 914–924. [Google Scholar] [CrossRef]
- Feng, X.; Ju, H.; Song, T.; Fang, T.; Liu, W.; Huang, W. Highly Efficient Photocatalytic Degradation Performance of CsPb(Br1−xClx)3-Au Nanoheterostructures. ACS Sustain. Chem. Eng. 2019, 7, 5152–5156. [Google Scholar] [CrossRef]
- Wang, T.; Yue, D.; Li, X.; Zhao, Y. Applied Catalysis B: Environmental Lead-free double perovskite Cs2AgBiBr6/RGO composite for efficient visible light photocatalytic H2 evolution. Appl. Catal. B Environ. 2020, 268, 118399. [Google Scholar] [CrossRef]
- Li, R.; Li, X.; Wu, J.; Lv, X.; Zheng, Y.; Zhao, Z.; Ding, X. Few-layer black phosphorus-on-MAPbI3 for superb visible-light photocatalytic hydrogen evolution from HI splitting Ran. Appl. Catal. B Environ. 2019, 259, 118075. [Google Scholar] [CrossRef]
- Jiang, Y.; Liao, J.-F.; Xu, Y.-F.; Chen, H.-Y.; Wang, X.; Kuang, D. Hierarchical CsPbBr3 nanocrystal-decorated ZnO nanowire/macroporous graphene hybrids for enhancing charge separation and photocatalytic CO2 reduction. J. Mater. Chem. A 2019, 7, 13762–13769. [Google Scholar] [CrossRef]
- Poli, I.; Baker, J.; Hintermair, U.; Watson, T.M.; Regue, M.; Eslava, S.; Kumar, S.; Sackville, E.V.; Cameron, P.J. Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, Y.; Zhang, W.; Guo, X.; Dong, G.; Zhang, M. Water-Tolerant Lead Halide Perovskite Nanocrystals as Efficient Photocatalysts for Visible-Light-Driven CO2 Reduction in Pure Water. ChemSusChem 2019, 12, 4769–4774. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y. Environmental Science Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 2019, 12, 1495–1511. [Google Scholar] [CrossRef]
Photocatalysts | Examples | Photocatalytic Applications | Ref. | ||
---|---|---|---|---|---|
Binary semiconductor photocatalysts | nitrides | N3−-based | g-C3N4 | NOx oxidation | [47] |
oxides | O2−-based | ZnO | wastewater treatments | [48] | |
chalcogenides | sulfides-based | CdS | wastewater treatments | [49] | |
selenides-based | CdSe | photocatalytic CO2 reduction | [50] | ||
Ternary photocatalysts | ternary oxides | ABO3 | AgNbO3 | hydrogen evolution | [51] |
AB2O4 | CaIn2O5 | wastewater treatments | [52] | ||
ABO2 | AgGaO2 | wastewater treatments | [53] | ||
ABO4 | BiVO4 | wastewater treatments | [54] | ||
ternary halide | ABX3 | CsPbBr3 | wastewater treatments | [55] | |
ternary chalcogenides | sulfides-based | CuGaS2 | wastewater treatments | [56] | |
selenides-based | CuGaSe2 | hydrogen evolution | [57] |
Photocatalyst | Irradiation | Medium | Averaged Electron Yield μmol g−1 | Selectivity % | CO μmol g−1 | CH4 μmol g−1 | H2 μmol g−1 | Ref. |
---|---|---|---|---|---|---|---|---|
CsPbBr3 QDs 8.5 nm | 300 W Xe, AM 1.5G filter | H2O/ethyl acetate | 20.90 | 99 | 34.10 | 12.20 | 0.80 | [163] |
CsPbBr3 QDs 11.6 nm | 300 W Xe, AM 1.5G filter | H2O/ethyl acetate | - | - | 24 | 9 | 0.60 | [163] |
CsPbBr3 QDs 3.8 nm | 300 W Xe, AM 1.5G filter | H2O/ethyl acetate | - | - | 18.10 | 6.90 | 0.40 | [163] |
Cs2AgBiBr6 unwashed | 300 W Xe, AM 1.5G filter | ethyl acetate | 16.20 | 100 | 5.50 | 0.65 | - | [164] |
Cs2AgBiBr6 in Abs EtOH | 300 W Xe, AM 1.5G filter | ethyl acetate | 105.30 | 100 | 14.10 | 9.60 | - | [164] |
Bulk Cs2AgBiBr6 in Abs EtOH | 300 W Xe, AM 1.5G filter | ethyl acetate | 5.60 | - | - | - | [164] | |
CsPbBr3 QDs | 100 W Xe, AM 1.5G filter | ethyl acetate | 284.70 | 99.3 | 49.50 | 22.9 | 1.07 | [165] |
CsPbBr3 QDs/G.O. | 100 W Xe, AM 1.5G filter | ethyl acetate | 357.40 | 99.1 | 58.70 | 29.6 | 1.58 | [165] |
CsPbBr3 | 100 W Xe, AM 1.5G filter | CO2 and H2O vapour | 33.42 | 100 | - | - | - | [166] |
CsPbBr3/ZIF-8 | 100 W Xe, AM 1.5G filter | CO2 and H2O vapour | 46.49 | 100 | - | - | - | [166] |
CsPbBr3/ZIF-67 | 100 W Xe, AM 1.5G filter | CO2 and H2O vapour | 88.89 | 100 | - | - | - | [166] |
15%-CsPbBr3 QDs/UiO-66 | 300 W Xe, 420 nm filter | H2O/ethyl acetate | 222 | - | 98.57 | 3.08 | - | [167] |
CsPbBr3 NCs | 300 W Xe, 420 nm filter | ethyl acetate | 29.60 | 100 | 3.62 | 2.79 | 0 | [158] |
CsPbBr3 NCs/Pd NS (100) | 300 W Xe, 420 nm filter | ethyl acetate | 41.382 | 97.6 | 7.92 | 3.07 | 0.50 | [158] |
CsPbBr3 NCs/Pd NS (300) | 300 W Xe, 420 nm filter | ethyl acetate | 59.08 | 96 | 12.63 | 10.41 | 1.17 | [158] |
CsPbBr3 NCs/Pd NS (600) | 300 W Xe, 420 nm filter | ethyl acetate | 101.39 | 93.5 | 5.77 | 5.26 | 3.29 | [158] |
CsPbBr3 NCs/Pd NS (900) | 300 W Xe, 420 nm filter | ethyl acetate | 52.66 | 94.7 | 3.90 | - | 1.40 | [158] |
CsPbBr3 NCs | 150 W Xe, AM 1.5G filter | ethyl acetate/IPA | 25.72 | 90.3 | 3.35 | 2.06 | 1.64 | [168] |
CsPbBr3 NCs/a-TiO2 (10) | 150 W Xe, AM 1.5G filter | ethyl acetate/IPA | 106.56 | 90.5 | 7.73 | 10.12 | 5.08 | [168] |
CsPbBr3 NCs/a-TiO2 (20) | 150 W Xe, AM 1.5G filter | ethyl acetate/IPA | 193.36 | 95.5 | 11.71 | 20.15 | 4.38 | [168] |
CsPbBr3 NCs/a-TiO2 (30) | 150 W Xe, AM 1.5G filter | ethyl acetate/IPA | 140.09 | 93.7 | 8.05 | 14.4 | 4.42 | [168] |
CsPbBr3 NCs/a-TiO2 (50) | 150 W Xe, AM 1.5G filter | ethyl acetate/IPA | 79.25 | 87.4 | 8.72 | 6.47 | 5.01 | [168] |
Photocatalyst | Irradiation | Medium | HER μmol h−1 g−1 | Apparent Quantum Efficiency (%) | Ref. |
---|---|---|---|---|---|
MAPbBr3 | λ ≥ 420 nm | mixed HI/HBr acid | 11.20 | - | [173] |
MAPbBr3/Pt | λ ≥ 420 nm | mixed HI/HBr acid | 33.60 | - | [173] |
MAPbBr3−xIx | λ ≥ 420 nm | mixed HI/HBr acid | 1021.20 | - | [173] |
MAPbBr3−xIx/Pt | λ ≥ 420 nm | mixed HI/HBr acid | 2604.80 | 8.10 (450 nm) | [173] |
MAPbBr3 | λ ≥ 420 nm | HI acid | 11.31 | - | [53] |
DMF-MAPbBr3 | λ ≥ 420 nm | HI acid | 22.62 | - | [53] |
DMSO-MAPbBr3 | λ ≥ 420 nm | HI acid | 31.67 | - | [53] |
Pt:DMSO-MAPbBr3 | λ ≥ 420 nm | HI acid | 57.00 | - | [53] |
MAPbBr3 | 300 W Xe, λ ≥ 420 nm | HI solution | 14.00 | - | [174] |
MAPbBr3/Pt | 300 W Xe, λ ≥ 420 nm | HI solution | 40.00 | - | [174] |
MAPbBr3/rGO | 300 W Xe, λ ≥ 420 nm | HI solution | 938.90 | 1.4 (450 nm) | [174] |
MAPbBr3 | λ ≥ 420 nm | saturated HI solution | 38.00 | - | [162] |
Pt/MAPbBr3 | λ ≥ 420 nm | saturated HI solution | 90.00 | - | [162] |
TiO2-Pt/MAPbBr3 | λ ≥ 420 nm | saturated HI solution | 620.00 | - | [162] |
Pt/TiO2-MAPbBr3 | λ ≥ 420 nm | saturated HI solution | 1986.67 | 70 (420 nm) | [162] |
Photocatalyst | Band Gap (eV) | Irradiation | Pollutant | Degradation % | Ref. |
---|---|---|---|---|---|
TlCdI3 | 2.9 | UV Light | methyl orange dye | 27 | [186] |
TlCdI3 | 2.9 | UV Light | methylene blue dye | 100 | [186] |
CsSnBr3 | 1.74 | Visible light | crystal violet dye | 73.1 | [193] |
CsSnBr3 | 2.4 | 500 W Xe, Visible light | methyl orange dye | 90 | [167] |
CsPbCl3 | 2.4 | 500 W Xe, Visible light | methyl orange dye | 82 | [167] |
CsPbBr3 | 2.26 | 300 W Xe, λ ≥ 420 nm | tetracycline hydrochloride in ethanol | 76 | [180] |
CsPbBr3 | 2.26 | 300 W Xe, λ ≥ 420 nm | tetracycline hydrochloride in water | 18 | [180] |
CsPbBr3 | 2.26 | 300 W Xe, λ ≥ 420 nm | tetracycline hydrochloride in isopropanol | 53 | [180] |
CsPbBr3 | 2.26 | 300 W Xe, λ ≥ 420 nm | methyl orange dye in ethanol | 70 | [180] |
OHNH3PbI2Cl | 3.7 | Solar light | dye Direct Yellow 27 | 93.98 | [194] |
OHNH3PbCl3 | 3.9 | Solar light | dye Direct Yellow 27 | 82.19 | [194] |
Cs3Bi2I9-OA | 2.12 | Visible light | methylene blue in water | 62.1 | [192] |
Cs3Bi2I9-OA/Ag2S | - | Visible light | methylene blue in water | 88.8 | [192] |
Cs3Bi2I9-OA/TiO2 | - | Visible light | methylene blue in water | 83.5 | [192] |
Cs3Bi2Br9-OA | 2.65 | Visible light | methylene blue in water | 26.6 | [192] |
Cs3Bi2Br9-OA/Ag2S | - | Visible light | methylene blue in water | 40.13 | [192] |
Cs3Bi2Br9-OA/TiO2 | - | Visible light | methylene blue in water | 27.6 | [192] |
Cs3Bi2Br9 | 2.65 | Visible light | methylene blue in isopropanol | 66.3 | [192] |
Cs3Bi2Br9-OA NCs | 2.65 | Visible light | methylene blue in isopropanol | 58.8 | [192] |
IO-CsPbBr3 | 2.3 | simulated solar light, AM 1.5 | rhodamine 6G | 95 | [193] |
Bulk-CsPbBr3 | - | simulated solar light, AM 1.5 | rhodamine 6G | 75 | [193] |
Photocatalyst | Irradiation | Photocatalytic Reaction | Conversion % | Selectivity % | ref. |
---|---|---|---|---|---|
TiO2 | simulated light irradiation, AM 1.5G | oxidation of benzylic alcohol | 15 | 95 | [172] |
FAPbBr3 | simulated light irradiation, AM 1.5G | oxidation of benzylic alcohol | 15 | 99 | [172] |
nano-FAPbBr3 | simulated light irradiation, AM 1.5G | oxidation of benzylic alcohol | 11 | 99 | [172] |
15% FAPbBr3/TiO2 | simulated light irradiation, AM 1.5G | oxidation of benzylic alcohol | 63 | 99 | [172] |
15% FAPbBr3/SiO2 | simulated light irradiation, AM 1.5G | oxidation of benzylic alcohol | 13 | 99 | [172] |
15% FAPbBr3/TiO2-M | simulated light irradiation, AM 1.5G | oxidation of benzylic alcohol | 37 | 99 | [172] |
15% FAPbBr3/TiO2 | λ ≥ 500 nm | oxidation of benzylic alcohol | 13 | 99 | [172] |
15% FAPbBr3/TiO2 | without light irradiation | oxidation of benzylic alcohol | 0 | 0 | [172] |
CsPbI3 | Vis LED, 420–700 nm | thiophenol coupled to disulfide | 58 | - | [198] |
CsPbBr3 | Vis LED, 420–700 nm | thiophenol coupled to disulfide | 98 | - | [198] |
CsPbBr2Cl | Vis LED, 420–700 nm | thiophenol coupled to disulfide | 98 | - | [198] |
CsPbBr0.5Cl0.5 | Vis LED, 420–700 nm | thiophenol coupled to disulfide | 68 | - | [198] |
CsPbBrCl2 | Vis LED, 420–700 nm | thiophenol coupled to disulfide | 35 | - | [198] |
CsPbCl3 | Vis LED, 420–700 nm | thiophenol coupled to disulfide | 12 | - | [198] |
CsPbCl3 | Vis LED, 420–700 nm | thiophenol coupled to disulfide | 93 | - | [198] |
CsPbCl3 + Br2 | Vis LED, 420–700 nm | thiophenol coupled to disulfide | 62 | - | [198] |
Cs3Bi2Br9 | visible light ≥ 420 nm | alcoholysis of styrene oxide in IPA (isopropanol) | >99 | - | [195] |
Cs3Bi2Br9 | visible light ≥ 420 nm | alcoholysis of styrene oxide in IPA | >99 | - | [195] |
CsPbBr3 | visible light ≥ 420 nm | alcoholysis of styrene oxide in IPA | 1 | - | [195] |
CsPbI3 | visible light ≥ 495 nm | polymerization of 3,4-ethylenedioxythiophene | 32.6 | - | [199] |
CsPbBr3 | Blue LED 455 nm | α-alkylation of aldehydes | >99 | 96 | [200] |
CsPbBr3 NCs | 12 W Blue LED, 455 nm | synthesis aldehyde | 85 | - | [19] |
CsPbBr3 NCs | 12 W Blue LED, 455 nm | synthesis aldehyde | 52 | - | [19] |
CsPbBr3 NCs | 12 W Blue LED, 455 nm | synthesis tertiary amines | 90 | - | [19] |
CsPbBr3 NCs | 12 W Blue LED, 455 nm | synthesis tertiary amines | 79 | - | [19] |
CsPbBr3 NCs | 12 W Blue LED, 455 nm | cyclization of benzaldehyde phenylhydrazone | 88 | - | [19] |
MAPbBr3 | 12 W Blue LED, 455 nm | cyclization of benzaldehyde phenylhydrazone | 75 | - | [19] |
CsPbBr3 NCs | 12 W Blue LED, 455 nm | cyclization of ethyl (Z)-3-phenyl-3-(phenylamino)acrylate | 93 | - | [19] |
MAPbBr3 | 12 W Blue LED, 455 nm | cyclization of ethyl (Z)-3-phenyl-3-(phenylamino)acrylate | 65 | - | [19] |
CsPbBr3 NCs | 12 W Blue LED, 455 nm | coupling of benzoic acid with 4-bromotrifluorobenzene | 78 | - | [19] |
CsPbBr3 | 4.6 W Blue LED | photopolymerized styrene | 12 | - | [201] |
no perovskite | 4.6 W Blue LED | photopolymerized styrene | 3.2 | - | [201] |
no light | 4.6 W Blue LED | photopolymerized styrene | 1 | - | [201] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bresolin, B.-M.; Park, Y.; Bahnemann, D.W. Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst. Catalysts 2020, 10, 709. https://doi.org/10.3390/catal10060709
Bresolin B-M, Park Y, Bahnemann DW. Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst. Catalysts. 2020; 10(6):709. https://doi.org/10.3390/catal10060709
Chicago/Turabian StyleBresolin, Bianca-Maria, Yuri Park, and Detlef W. Bahnemann. 2020. "Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst" Catalysts 10, no. 6: 709. https://doi.org/10.3390/catal10060709
APA StyleBresolin, B. -M., Park, Y., & Bahnemann, D. W. (2020). Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst. Catalysts, 10(6), 709. https://doi.org/10.3390/catal10060709