A Highly Efficient Bifunctional Catalyst CoOx/tri-g-C3N4 for One-Pot Aerobic Oxidation–Knoevenagel Condensation Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Catalytic Performance
2.2.1. Aerobic Oxidation of Benzyl Alcohol
2.2.2. Knoevenagel Condensation of Benzaldehyde and Malononitrile
2.2.3. Oxidation–Condensation Tandem Reaction
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Characterization of Catalyst
3.3. Basicity Measurement
3.4. Catalyst Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Corma, A.; Rodenas, T.; Sabater, M.J. Monoalkylations with alcohols by a cascade reaction on bifunctional solid catalysts: Reaction kinetics and mechanism. J. Catal. 2011, 279, 319–327. [Google Scholar] [CrossRef]
- Li, P.; Cao, C.Y.; Chen, Z.; Liu, H.; Yu, Y.; Song, W.G. Core-shell structured mesoporous silica as acid-base bifunctional catalyst with designated diffusion path for cascade reaction sequences. Chem. Commun. 2012, 48, 10541–10543. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, C.; Hensen, E.J. Efficient tandem synthesis of methyl esters and imines by using versatile hydrotalcite-supported gold nanoparticles. Chem. Eur. J. 2012, 18, 12122–12129. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Fu, L.; Wei, L.; Liang, J.; Binks, B.P. Compartmentailzation of incompatible reagents within pickering emulsion droplets for one-pot cascade reactions. J. Am. Chem. Soc. 2015, 137, 1362–1371. [Google Scholar] [CrossRef] [PubMed]
- Dhakshinamoorthy, A.; Garcia, H. Cascade reactiions catalyzed by metal organic frameworks. ChemSusChem 2014, 7, 2392–2410. [Google Scholar] [CrossRef]
- Liu, K.; Xu, Y.; Yao, Z.; Miras, H.N.; Song, Y.F. Polyoxometalate-intercalated layered double hydroxides as efficient and recyclable bifunctional catalysts for cascade reactions. ChemCatChem 2016, 8, 929–937. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, A.E.; Riant, O.; Jensen, K.F.; Jonas, A.M. Molecular engineering of trifunctional supported catalysts for the aerobic oxidation of alcohols. Angew. Chem. Int. Ed. 2016, 55, 11044–11048. [Google Scholar] [CrossRef]
- Shiju, N.R.; Alberts, A.H.; Khalid, S.; Brown, D.R.; Rothenberg, G. Mesoporous silica with site-isolated amine and phosphotungstic acid groups: A solid catalyst with tunable antagonistic functions for one-pot tandem reactions. Angew. Chem. Int. Ed. 2011, 50, 9615–9619. [Google Scholar] [CrossRef]
- Krylov, I.B.; Terent’ev, A.O. Oxidative C-O coupling of benzylmalononitrile with 3-(hydroxyimino)pentane-2,4-dione. J. Org. Chem. 2015, 51, 10–13. [Google Scholar] [CrossRef]
- Wang, J.S.; Jin, F.Z.; Ma, H.C.; Li, X.B.; Liu, M.Y.; Kan, J.L.; Chen, G.J.; Dong, Y.B. Au@Cu(Ⅱ)-MOF: Highly efficient bifunctional heterogeneous catalyst for successive oxidation-condensation reactions. Inorg. Chem. 2016, 55, 6685–6691. [Google Scholar] [CrossRef]
- Sarmah, B.; Srivastava, R.; Manjunathan, P.; Shanbhag, G.V. Green and sustainable tandem catalytic approach for fine-chemicals synthesis using octahedral MnO2 molecular sieve: Catalytic activity versus method of catalyst synthesis. ACS Sustain. Chem. Eng. 2015, 3, 2933–2943. [Google Scholar] [CrossRef]
- Xu, L.; Li, C.; Zhang, K.; Wu, P. Bifunctional tandem catalysis on multilamellar organic-inorganic hybrid zeolites. ACS Catal. 2014, 4, 2959–2968. [Google Scholar] [CrossRef]
- Chen, C.; Yang, H.; Chen, J.; Zhang, R.; Guo, L.; Gan, H.; Song, B.; Zhu, W.; Hua, L.; Hou, Z. One-pot tandem catalytic synthesis of α,β-unsaturated nitriles from alcohol with nitriles in aqueous phase. Catal. Commun. 2014, 47, 49–53. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, H.Y.; Wang, L.; Zhang, Y.; Zhang, Y.; Zhao, J. Ru/UiO-66 catalyst for the reduction of nitroarenes and tandem reaction of alcohol oxidation/Knoevenagel condensation. ACS Omega 2018, 3, 4199–4212. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Aguila, B.; Ma, S. A bifunctional covalent organic framework as an efficient platform for cascade catalysis. Mater. Chem. Front. 2017, 1, 1310–1316. [Google Scholar] [CrossRef]
- Qin, Y.; Luan, Y.; Peng, X.; Yang, M.; Hou, J.; Wang, G. Design and synthesis of an Au@MIL-53(NH2) catalyst for a one-pot aerobic oxidation/Knoevenagel condensation reaction. Eur. J. Inorg. Chem. 2015, 2015, 5099–5105. [Google Scholar]
- Miao, Z.; Luan, Y.; Qi, C.; Ramella, D. The synthesis of a bifunctional copper metal organic framework and its application in the aerobic oxidation/Knoevenagel condensation sequential reaction. Dalton Trans. 2016, 45, 13917–13924. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, H.Y.; Wang, L.; Zhang, Y.; Zhao, J. Ru(OH)x supported on polyethylenimine modified magnetic nanoparticles coated with silica as catalyst for one-pot tandem aerobic oxidation/Knoevenagel condensation of alcohols and active methylene compounds. React. Kinet. Mech. Catal. 2018, 125, 789–806. [Google Scholar] [CrossRef]
- Wu, J.Q.; Hua, W.M.; Yue, Y.H.; Gao, Z. Swelling characteristics of g-C3N4 as base catalyst in liquid-phase reaction. Acta Phys. Chim. Sin. 2020, 36, 1904066. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale 2015, 7, 15–37. [Google Scholar] [CrossRef]
- Chan, M.; Liu, R.; Hsiao, M. Graphitic carbon nitride-based nanocomposites and their biological applications: A review. Nanoscale 2019, 11, 14993–15003. [Google Scholar] [CrossRef] [PubMed]
- Rono, N.; Kibet, J.; Martincigh, B.; Nyamori, V. A review of the current status of graphitic carbon nitride. Crit. Rev. Solid State Mater. Sci. 2020. [Google Scholar] [CrossRef]
- Bai, C.; Li, A.; Yao, X.; Liu, H.; Li, Y. Efficient and selective aerobic oxidation of alcohols catalyzed by MOF-derived Co catalysts. Green Chem. 2016, 18, 1061–1069. [Google Scholar] [CrossRef]
- Li, M.; Fu, X.; Peng, L.; Bai, L.; Wu, S.; Kan, Q.; Guan, J. Synthesis of three-dimensional-ordered mesoporous cobalt oxides for selective oxidation of benzyl alcohol. ChemistrySelect 2017, 2, 9486–9489. [Google Scholar] [CrossRef]
- Cordoba, M.; Miranda, C.; Lederhos, C.; Pascual, F.C.; Ardila, A.; Fuentes, G.A.; Pouilloux, Y.; Ramirez, A. Catalytic performance of Co3O4 on different activated carbon supports in the benzyl alcohol oxidation. Catalysts 2017, 7, 384. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Kailasam, K.; Fischer, A.; Thomas, A. Supported cobalt oxide nanoparticles as catalyst for aerobic oxidation of alcohols in liquid phase. ACS Catal. 2011, 1, 342–347. [Google Scholar] [CrossRef]
- Wu, J.; Hua, W.; Yue, Y.; Gao, Z. g-C3N4 modified Co3O4 as efficient catalysts for aerobic oxidation of benzyl alcohol. React. Kinet. Mech. Catal. 2019, 128, 109–120. [Google Scholar] [CrossRef]
- Shojaei, F.; Kang, H. Stability and electronic structures of triazine-based carbon nitride nanotubes. RSC Adv. 2015, 5, 10892–10898. [Google Scholar] [CrossRef]
- Zhu, W.; Song, H.; Lv, Y. Triazine-based graphitic carbon nitride: Controllable synthesis and enhanced cataluminescent sensing for formic acid. Anal. Bioanal. Chem. 2018, 410, 7499–7509. [Google Scholar] [CrossRef]
- Zhu, B.; Wageh, S.; Al-Ghamdi, A.; Yang, S.; Tian, Z.; Yu, J. Adsorption of CO2, O2, NO and CO on s-triazine-based g-C3N4 surface. Catal. Today 2019, 335, 117–127. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Guo, Y.; Ren, X.K.; Wu, L.; Liu, L.; Shi, Z.; Wang, Y. Pd nanoparticles confined within triazine-based carbon nitride NTs: An efficient catalyst for Knoevenagel condensation-reduction cascade reactions. Catal. Today 2019, 330, 124–134. [Google Scholar] [CrossRef]
- Yang, J.; Liang, Y.; Li, K.; Yang, G.; Wang, K.; Xu, R.; Xie, X. One-step synthesis of novel K+ and cyano groups decorated triazine-/heptazine-based g-C3N4 tubular homojunctions for boosting photocatalytic H2 evolution. Appl. Catal. B Environ. 2020, 262, 118252. [Google Scholar] [CrossRef]
- Liotta, L.F.; Cario, G.D.; Pantaleo, G.; Venezia, A.M.; Deganello, G. Co3O4/CeO2 composite oxides for methane emissions abatement: Relationship between Co3O4–CeO2 interaction and catalytic activity. Appl. Catal. B Environ. 2006, 66, 217–227. [Google Scholar] [CrossRef]
- Petitto, S.C.; Marsh, E.M.; Carson, G.A.; Langell, M.A. Cobalt oxide surface chemistry: The interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water. J. Mol. Catal. A Chem. 2008, 281, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Jiang, H.Y.; Li, X.Y.; Wu, X.T.; Li, H.X. Amine-functionalized GO as an active and reusable acid–base bifunctional catalyst for one-pot cascade reactions. ACS Catal. 2014, 4, 394–401. [Google Scholar] [CrossRef]
- Xia, Y.; Dai, H.; Jiang, H.; Zhang, L. Three-dimensional ordered mesoporous cobalt oxides: Highly active catalysts for the oxidation of toluene and methanol. Catal. Commun. 2010, 11, 1171–1175. [Google Scholar] [CrossRef]
- Lee, K.J.; Kumar, P.A.; Maqbool, M.S.; Rao, K.N.; Song, K.H.; Ha, H.P. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: Physic-chemical properties and catalytic activity. Appl. Catal. B Environ. 2013, 142, 705–717. [Google Scholar] [CrossRef]
- Kang, M.; Park, E.D.; Kim, J.M.; Yie, J.E. Manganese oxide catalysts for NOx reduction with NH3 at low temperature. Appl. Catal. A Gen. 2007, 327, 261–269. [Google Scholar] [CrossRef]
- Slot, T.K.; Eisenberg, D.; van Noordenne, D.; Jungbacker, P.; Rothenberg, G. Cooperative catalysis for selective alcohol oxidation with molecular oxygen. Chem. Eur. J. 2016, 22, 12307–12311. [Google Scholar] [CrossRef]
- Mo, X.H.; Lopez, D.E.; Suwannakarn, K.; Liu, Y.; Lotero, E.; Goodwin, J.G., Jr.; Lu, C. Activation and deactivation characteristics of sulfonated carbon catalysts. J. Catal. 2008, 254, 332–338. [Google Scholar] [CrossRef]
- Luo, D.; Liu, S.; Liu, J.; Zhao, J.; Miao, C.; Ren, J. Catalytic combustion of toluene over cobalt oxides supported on graphitic carbon nitride (CoOx/g-C3N4) catalyst. Ind. Eng. Chem. Res. 2018, 57, 11920–11928. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Z.; Wang, J.; Xiao, Z.; Huang, X.; Liu, Z.; Wang, S. N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts. Nanotechnology 2017, 28, 165402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christoskova, S.G.; Stojanova, M.; Georgieva, M.; Mehandzhiey, D. Study on the thermal stability of a high Co-oxide used as low-temperature catalyst and oxidant for complete oxidation. Thermochim. Acta 1997, 292, 77–83. [Google Scholar] [CrossRef]
Catalysts | SBET (m2/g) | Vtotal (cm3/g) | Pore Size (nm) a | Co Content (%) b | Amount of Base Sites (mmol/g) c |
---|---|---|---|---|---|
tri-g-C3N4 | 3 | 0.02 | 26.3 | − | 3.25 |
1CoOx/tri-g-C3N4 | 13 | 0.12 | 35.9 | 1.3 | 2.73 |
3CoOx/tri-g-C3N4 | 13 | 0.13 | 37.9 | 2.9 | 2.62 |
5CoOx/tri-g-C3N4 | 9 | 0.07 | 32.3 | 5.4 | 2.50 |
7CoOx/tri-g-C3N4 | 12 | 0.10 | 32.2 | 7.6 | 2.40 |
Catalysts | Co 2p3/2 Peaks | O1S Peaks | ||||
---|---|---|---|---|---|---|
Co2+ (eV) | Co3+ (eV) | Co3+/Co2+ | Oads (eV) | Olatt (eV) | Oads/Olatt | |
1CoOx/tri-g-C3N4 | 782.4 | 780.8 | 0.60 | 532.4 | 531.2 | 0.46 |
3CoOx/tri-g-C3N4 | 782.2 | 780.8 | 0.84 | 532.8 | 531.5 | 0.60 |
5CoOx/tri-g-C3N4 | 782.4 | 780.8 | 1.63 | 532.9 | 531.7 | 1.11 |
7CoOx/tri-g-C3N4 | 782.4 | 780.8 | 1.31 | 532.8 | 531.6 | 0.84 |
Catalysts | Aerobic Oxidation | Knoevenagel Condensation | ||
---|---|---|---|---|
Time (h) | Conversion (%) | Time (h) | Conversion (%) | |
tri-g-C3N4 | 3.0 | 2.0 | 0.5 | 76 |
1CoOx/tri-g-C3N4 | 3.0 | 49.9 | 0.5 | 74 |
3CoOx/tri-g-C3N4 | 3.0 | 63.0 | 0.5 | 72 |
5CoOx/tri-g-C3N4 | 3.0 | 87.6 | 0.5 | 71 |
7CoOx/tri-g-C3N4 | 3.0 | 79.3 | 0.5 | 70 |
Catalysts | Time (h) | Conversion of A (%) | Yield of C (%) |
---|---|---|---|
tri-g-C3N4 | 6 | 2.1 | 1.9 |
1CoOx/tri-g-C3N4 | 3 | 43.9 | 43.9 |
6 | 65.5 | 65.5 | |
3CoOx/tri-g-C3N4 | 3 | 53.7 | 53.7 |
6 | 85.5 | 85.5 | |
5CoOx/tri-g-C3N4 | 3 | 83.2 | 83.2 |
6 | 96.4 | 96.4 | |
7CoOx/tri-g-C3N4 | 3 | 65.1 | 65.1 |
6 | 90.7 | 90.7 |
Catalyst | Oxidant | Temperature (°C) | Time (h) a | Conversion (%) | Yield (%) | Ref. |
---|---|---|---|---|---|---|
Au@Cu(Ⅱ)-MOF | Air | 110 | 15 + 7 | 99 | 99 | [10] |
OMS-2-SF | O2 | 85 | 9 + 0.5 | 99.5 | 84.5 | [11] |
Pd/LS-AT-OH- | O2 | 85 | 9 + 2 | 89.6 | 88.3 | [12] |
Pd1-Au1/LDH | O2 | 80 | 1.5 + 1 | 99 | 98.0 | [13] |
UiO-66-Ru | O2 | 100 | 1 + 5 | 100 | 89.3 | [14] |
Pd/COF-TpPa-Py | O2 | 80 | 4 + 1.5 | 98 | 98 | [15] |
Au@MIL-53(NH2) | O2 | 100 | 13 | 99 | 99 | [16] |
Cu3TATAT-3 | O2 | 75 | 12 | 95 | 95 | [17] |
Fe3O4@SiO2@PEI@Ru(OH)x | O2 | 110 | 22 | 98.6 | 90.2 | [18] |
5CoOx/tri-g-C3N4 | O2 | 80 | 6 | 96.4 | 96.4 | Present work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Hua, W.; Yue, Y.; Gao, Z. A Highly Efficient Bifunctional Catalyst CoOx/tri-g-C3N4 for One-Pot Aerobic Oxidation–Knoevenagel Condensation Reaction. Catalysts 2020, 10, 712. https://doi.org/10.3390/catal10060712
Wu J, Hua W, Yue Y, Gao Z. A Highly Efficient Bifunctional Catalyst CoOx/tri-g-C3N4 for One-Pot Aerobic Oxidation–Knoevenagel Condensation Reaction. Catalysts. 2020; 10(6):712. https://doi.org/10.3390/catal10060712
Chicago/Turabian StyleWu, Jiequn, Weiming Hua, Yinghong Yue, and Zi Gao. 2020. "A Highly Efficient Bifunctional Catalyst CoOx/tri-g-C3N4 for One-Pot Aerobic Oxidation–Knoevenagel Condensation Reaction" Catalysts 10, no. 6: 712. https://doi.org/10.3390/catal10060712
APA StyleWu, J., Hua, W., Yue, Y., & Gao, Z. (2020). A Highly Efficient Bifunctional Catalyst CoOx/tri-g-C3N4 for One-Pot Aerobic Oxidation–Knoevenagel Condensation Reaction. Catalysts, 10(6), 712. https://doi.org/10.3390/catal10060712