Most Recent Advances in Diesel Engine Catalytic Soot Abatement: Structured Catalysts and Alternative Approaches
Abstract
:1. Introduction
- 2015: each vehicle manufacturer must achieve a fleet-average CO2 emission target of 130 g km−1. Additional measures, such as the use of biofuels, can be adopted for obtaining an additional emission reduction of 10 g km−1, fulfilling the EU CO2 emission target of 130 g km−1.
- 2020: each manufacturers’ new passenger cars registered in 2020 must achieve a fleet-average CO2 emission target of 95 g km−1, and by 100% of cars from 2021 onwards.
2. Structured Catalysts
2.1. Carrier Structure
2.2. Catalyst Morphology
3. Highlights on the Recent Advances in Modeling Approaches
3.1. Carrier Structure and Filtration Efficiency
- Cracks in the carrier of the DPF: uncontrolled regenerations or by dropping to idle during DPF regeneration may cause thermal stresses on the carrier, resulting in ring-off cracks or internal cracks.
- Melting of the carrier: uncontrolled regenerations may cause the melting of cordierite carriers (characterized by a melting point of 1200 °C), but not of the silicon carbide (SiC) ones (melting point of 2800 °C).
- Unplugged DPF or total removal: vehicle owners may decide to remove or manumit the DPF instead of replacing it if, for example, high pressure drop due to ash accumulation or extra fuel consumption due to active regeneration and engine tuning reasons occurs.
- (1)
- The predictive model has shown an average error of 2.24%;
- (2)
- The ash mass present on the DPF, also depending on the fuel composition, resulted in important effects. In general, the higher the preloaded ash mass is, the higher the increase of the variation rate of the pressure drop over time is. More in detail, the authors have shown that the increase of the biodiesel proportion in the fuel (diesel, B50, and B100) resulted in the decrease of the ash mass pre deposited on the filter and consequently:
- -
- DPF with a higher starting ash loading reached the same pressure drop in a lower soot loading time, as well as it reached the same soot loading value in a lower loading time;
- -
- The discriminant results Δ have shown that a DPF with higher ash loading resulted in a higher energy consumption due to a higher frequency of the DPF regeneration. The use of biodiesel or its blends can result in lower regeneration frequency, due to the increased soot filtration time. The authors also indicated that a clean DPF has an optimal endpoint forecasting time during the B0 soot loading process in the range of 4.25–4.5 h.
3.2. Other Simulation Approaches
4. Highlights on Some Alternative Approaches for the Reduction of the Emissions from Diesel Engines
5. Conclusions
Funding
Conflicts of Interest
References
- Greim, H. Diesel engine emissions: Are they no longer tolerable? Arch. Toxicol. 2019, 93, 2483–2490. [Google Scholar] [CrossRef] [PubMed]
- Maricq, M.M. Chemical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci. 2007, 38, 1079–1118. [Google Scholar] [CrossRef]
- Bergthorson, J.M.; Thomson, M.J. A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renew. Sustain. Energy Rev. 2015, 42, 1393–1417. [Google Scholar] [CrossRef]
- Papadopoulos, G.; Ntziachristos, L.; Tziourtzioumis, C.; Keramydas, C.; Lo, T.-S.; Ng, K.-L.; Wong, H.-L.A.; Wong, C.K.-L. Real-world gaseous and particulate emissions from Euro IV to VI medium duty diesel trucks. Sci. Total Environ. 2020, 731, 139137. [Google Scholar] [CrossRef]
- Ruehl, C.; Smith, J.D.; Ma, Y.; Shields, J.E.; Burnitzki, M.; Sobieralski, W.; Ianni, R.; Chernich, D.J.; Chang, M.-C.O.; Collins, J.F.; et al. Emissions During and Real-world Frequency of Heavy-duty Diesel Particulate Filter Regeneration. Environ. Sci. Technol. 2018, 52, 5868–5874. [Google Scholar] [CrossRef]
- Available online: https://www.transportpolicy.net/standard/eu-heavy-duty-emissions/ (accessed on 21 June 2020).
- Ayodhya, A.S.; Narayanappa, K.G. An overview of after-treatment systems for diesel engines. Environ. Sci. Pollut. Res. 2018, 25, 35034–35047. [Google Scholar] [CrossRef]
- Brijesh, P.; Sreedhara, S. Exhaust emissions and its control methods in compression ignition engines: A review. Int. J. Automot. Technol. 2013, 14, 195–206. [Google Scholar] [CrossRef]
- Mahamulkar, S.; Yin, K.; Agrawal, P.; Davis, R.J.; Jones, C.W.; Malek, A.; Shibata, H. Formation and Oxidation/Gasification of Carbonaceous Deposits: A Review. Ind. Eng. Chem. Res. 2016, 55, 9760–9818. [Google Scholar] [CrossRef]
- Bans, E.; Ulla, M.A.; Mir, E.; Milt, V.G. Structured Catalysts for Soot Combustion for Diesel Engines. Chapter 5 of the book. In Diesel Engine—Combustion, Emissions and Condition Monitoring; Saiful, B., Ed.; IntechOpen: London, UK, 2013; Available online: https://www.intechopen.com/books/diesel-engine-combustion-emissions-and-condition-monitoring/structured-catalysts-for-soot-combustion-for-diesel-engines (accessed on 22 June 2020). [CrossRef]
- Jansma, H.; Fino, D.; Uitz, R.; Makkee, M. Influence of Diesel Fuel Characteristics on Soot Oxidation Properties. Ind. Eng. Chem. Res. 2012, 51, 7559–7564. [Google Scholar] [CrossRef]
- Palazzo, N.; Kögl, M.; Bauer, P.; Mannazhi, M.N.; Zigan, L.; Huber, F.J.T.; Will, S. Investigation of Soot Formation in a Novel Diesel Fuel Burner. Energies 2019, 12, 1993. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Valencia, N.; Gallego, J.; Santamaría, A. Effect of an Iron Compound Added to Diesel Fuels in Both Soot Reduction Capacity and Soot Oxidation Reactivity. Energy Fuels 2017, 31, 12455–12465. [Google Scholar] [CrossRef]
- Palma, V.; Ciambelli, P.; Meloni, E. Influence of operative parameters on microwave regeneration of catalytic soot wff for diesel engines. Chem. Eng. Trans. 2011, 25, 1001–1006. [Google Scholar] [CrossRef]
- Chiavola, O.; Chiatti, G.; Sirhan, N. Impact of Particulate Size During Deep Loading on DPF Management. Appl. Sci. 2019, 9, 3075. [Google Scholar] [CrossRef] [Green Version]
- Cordtz, R.F.; Ivarsson, A.; Schramm, J. Steady State Investigations of DPF Soot Burn Rates and DPF Modeling; SAE Technical Paper; SAE International: Warrendale, PA, USA; Troy, MI, USA, 2011; pp. 1–14. [Google Scholar] [CrossRef]
- Palma, V.; Ciambelli, P.; Meloni, E. Catalyst Load Optimization for Microwave Susceptible Catalysed DPF. Chem. Eng. Trans. 2013, 32, 799–804. [Google Scholar]
- Lapuerta, M.; Oliva, F.; Martínez-Martínez, S. Modeling of the Soot Accumulation in DPF Under Typical Vehicle Operating Conditions. SAE Int. J. Fuels Lubr. 2010, 3, 532–542. [Google Scholar] [CrossRef]
- Palma, V.; Ciambelli, P.; Meloni, E. Optimising the catalyst load for Microwave susceptible catalysed DPF. Chem. Eng. Trans. 2012, 29, 637–642. [Google Scholar]
- Serrano, J.R.; Piqueras, P.; de La Morena, J.; Sanchis, E.J. Late Fuel Post-Injection Influence on the Dynamics and Efficiency of Wall-Flow Particulate Filters Regeneration. Appl. Sci. 2019, 9, 5384. [Google Scholar] [CrossRef] [Green Version]
- Kurien, C.; Srivastava, A.K.; Gandigudi, N.; Anand, K. Soot deposition effects and microwave regeneration modelling of diesel particulate filtration system. J. Energy Inst. 2020, 93, 463–473. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Nguyen, D.B.; Heo, I.; Mok, Y.S. Plasma-Assisted Selective Catalytic Reduction for Low-Temperature Removal of NOx and Soot Simulant. Catalysts 2019, 9, 853. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Ha, K.H.; Du, D. New Experiment of Diesel Exhaust Treatment by Atmospheric Pressure Plasma–Wood Fiber Combination. Catalysts 2020, 10, 577. [Google Scholar] [CrossRef]
- Zhong, C.; Gong, J.; Liu, W.; Liu, G. Low temperature, medium temperature and high temperature performance of the continuous regenerative diesel particulate filter assisted by electric regeneration. Chem. Eng. Sci. 2019, 207, 980–992. [Google Scholar] [CrossRef]
- Fino, D.; Bensaid, S.; Piumetti, M.; Russo, N. A review on the catalytic combustion of soot in Diesel particulate filters for automotive applications: From powder catalysts to structured reactors. Appl. Catal. A Gen. 2016, 509, 75–96. [Google Scholar] [CrossRef]
- Yang, S.; Deng, C.; Gao, Y.; He, Y. Diesel particulate filter design simulation: A review. Adv. Mech. Eng. 2016, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Prasad, N.R.; Singh, S.V. A review on catalytic oxidation of soot emitted from diesel fuelled engines. J. Environ. Chem. Eng. 2020, 8, 103945. [Google Scholar] [CrossRef]
- Mishra, A.; Prasad, R. Preparation and Application of Perovskite Catalysts for Diesel Soot Emissions Control: An Overview. Catal. Rev. 2014, 56, 57–81. [Google Scholar] [CrossRef]
- Xu, H.; Yan, N.; Qu, Z.; Liu, W.; Mei, J.; Huang, W.; Zhao, S. Gaseous Heterogeneous Catalytic Reactions over Mn-Based Oxides for Environmental Applications: A Critical Review. Environ. Sci. Technol. 2017, 51, 8879–8892. [Google Scholar] [CrossRef] [PubMed]
- Grabchenko, M.V.; Mikheeva, N.N.; Mamontov, G.V.; Salaev, M.A.; Liotta, L.F.; Vodyankina, O.V. Ag/CeO2 Composites for Catalytic Abatement of CO, Soot and VOCs. Catalysts 2018, 8, 285. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.; Moghaddas, H.; Soltani, S.M.; Kheawhom, S. Technological Applications of Honeycomb Monoliths in Environmental Processes: A review. Process. Saf. Environ. Prot. 2020, 133, 286–300. [Google Scholar] [CrossRef]
- Meloni, E.; Caldera, M.; Palma, V.; Pignatelli, V.; Gerardi, V. Soot abatement from biomass boilers by means of open-cell foams filters. Renew. Energy 2019, 131, 745–754. [Google Scholar] [CrossRef]
- Palma, V.; Ciambelli, P.; Meloni, E.; Sin, A. Study of the catalyst load for a microwave susceptible catalytic DPF. Catal. Today 2013, 216, 185–193. [Google Scholar] [CrossRef]
- Bermúdez, V.; Serrano, J.R.; Piqueras, P.; Sanchis, E.J. On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters. Appl. Sci. 2017, 7, 234. [Google Scholar] [CrossRef] [Green Version]
- Guan, B.; Zhan, R.; Lin, H.; Huang, Z. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. J. Environ. Manag. 2015, 154, 225–258. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, K.; Xiao, B.; Gao, P.; He, D.; Cai, T.; Yuan, J. Fabrication of Monolithic Catalysts: Comparison of the Traditional and the Novel Green Methods. Catalysts 2019, 9, 981. [Google Scholar] [CrossRef] [Green Version]
- Bagi, S.; Sharma, V.; Patel, M.; Aswath, P.B. Effects of Diesel Soot Composition and Accumulated Vehicle Mileage on Soot Oxidation Characteristics. Energy Fuels 2016, 30, 8479–8490. [Google Scholar] [CrossRef]
- Meng, Z.; Li, J.; Fang, J.; Tan, J.; Qin, Y.; Jiang, Y.; Qin, Z.; Bai, W.; Liang, K. Experimental study on regeneration performance and particle emission characteristics of DPF with different inlet transition sections lengths. Fuel 2020, 262, 116487. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, C.; Li, J.; Fang, J.; Tan, J.; Qin, Y.; Jiang, Y.; Qin, Z.; Bai, W.; Liang, K. Particle emission characteristics of DPF regeneration from DPF regeneration bench and diesel engine bench measurements. Fuel 2020, 262, 116589. [Google Scholar] [CrossRef]
- R’Mili, B.; Boreave, A.; Même, A.; Vernoux, P.; Leblanc, M.; Noel, L.; Raux, S.; D’Anna, B. Physico-Chemical Characterization of Fine and Ultrafine Particles Emitted during Diesel Particulate Filter Active Regeneration of Euro5 Diesel Vehicles. Environ. Sci. Technol. 2018, 52, 3312–3319. [Google Scholar] [CrossRef]
- Palma, V.; Ciambelli, P.; Meloni, E.; Sin, A. Catalytic DPF microwave assisted active regeneration. Fuel 2015, 140, 50–61. [Google Scholar] [CrossRef]
- Meloni, E.; Palma, V. Improved Microwave Susceptible Catalytic Diesel Particulate Filter. Chem. Eng. Trans. 2017, 57, 829–834. [Google Scholar] [CrossRef]
- Meloni, E.; Palma, V.; Vaiano, V. Optimized microwave susceptible catalytic diesel soot trap. Fuel 2017, 205, 142–152. [Google Scholar] [CrossRef]
- Rossomando, B.; Arsie, I.; Meloni, E.; Palma, V.; Pianese, C. Experimental Testing of a Low Temperature Regenerating Catalytic DPF at the Exhaust of a Light-Duty Diesel Engine; SAE Technical Paper; SAE International: Warrendale, PA, USA; Troy, MI, USA, 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Rossomando, B.; Arsie, I.; Meloni, E.; Palma, V.; Pianese, C. Experimental Test on the Feasibility of Passive Regeneration in a Catalytic DPF at the Exhaust of a Light-Duty Diesel Engine; SAE Technical Paper; SAE International: Warrendale, PA, USA; Troy, MI, USA, 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Tang, L.; Zhao, Z.; Li, K.; Yu, X.; Wei, Y.; Liu, J.; Peng, Y.; Li, Y.; Chen, Y. Highly Active Monolith Catalysts of LaKCoO3 Perovskite-type Complex Oxide on Alumina-washcoated Diesel Particulate Filter and the Catalytic Performances for the Combustion of Soot. Catal. Today 2020, 339, 159–173. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, X.; Chen, G.; Wu, H.; Han, Z.; Li, R. Experimental Study on a Diesel Particulate Filter with Reciprocating Flow. ACS Omega 2019, 4, 17098–17108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, G.; Zhang, Y.; Chen, A.; Yu, Y. Potassium-Activated Wire Mesh: A Stable Monolithic Catalyst for Diesel Soot Combustion. Chem. Eng. Technol. 2017, 40, 50–55. [Google Scholar] [CrossRef]
- Godoy, M.L.; Banús, E.D.; Sanz, O.; Montes, M.; Miró, E.; Milt, V.G. Stacked Wire Mesh Monoliths for the Simultaneous Abatement of VOCs and Diesel Soot. Catalysts 2018, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Jing, M.; Wei, Y.; Zhao, Z.; Zhang, X.; Xiong, J.; Liu, J.; Song, W.; Li, J. High-efficient catalysts of core-shell structured Pt@transition metal oxides (TMOs) supported on 3DOM-Al2O3 for soot oxidation: The effect of strong Pt-TMO interaction. Appl. Catal. B Environ. 2019, 244, 628–640. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, G.; Lang, Y.; Chen, R.; Jia, L.; Yue, J.; Shen, M.; Du, C.; Shan, B. Promoting soot combustion efficiency by strengthening the adsorption of NOx on the 3DOM mullite catalyst. J. Catal. 2020, 384, 96–105. [Google Scholar] [CrossRef]
- Sacco, N.A.; Banús, E.D.; Bortolozzi, J.P.; Milt, V.G.; Miró, E. Ultrasound-Assisted Deposition of Co-CeO2 onto Ceramic Microfibers to Conform Catalytic Papers: Their Application in Engine Exhaust Treatment. ACS Omega 2018, 3, 18334–18342. [Google Scholar] [CrossRef] [Green Version]
- Zokoe, J.; Feng, X.; Su, C.; McGinn, P.J. Improved Hydrothermal Stability in Glass Diesel Soot Oxidation Catalysts. Catalysts 2019, 9, 684. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Wang, J.; Liu, J.; Cheng, X.; Ma, H.; Wu, H.; Yang, Z.; Zhang, G.; Sun, X. Paper-Structured Catalyst Based on CeO2–ZrO2 Fibers for Soot Combustion. Catal. Lett. 2019, 149, 3543–3555. [Google Scholar] [CrossRef]
- Leonardi, S.A.; Tuler, F.E.; Gaigneaux, E.; Debecker, D.; Miró, E.E.; Milt, V.G. Novel ceramic paper structures for diesel exhaust purification. Environ. Sci. Pollut. Res. 2018, 25, 35276–35286. [Google Scholar] [CrossRef]
- Martinovic, F.; Andana, T.; Deorsola, F.A.; Bensaid, S.; Pirone, R. On-Filter Integration of Soot Oxidation and Selective Catalytic Reduction of NOx with NH3 by Selective Two Component Catalysts. Catal. Lett. 2019, 150, 573–585. [Google Scholar] [CrossRef]
- Martinovic, F.; Andana, T.; Piumetti, M.; Armandi, M.; Bonelli, B.; Deorsola, F.A.; Bensaid, S.; Pirone, R. Simultaneous improvement of ammonia mediated NOx SCR and soot oxidation for enhanced SCR-on-Filter application. Appl. Catal. A Gen. 2020, 596, 117538. [Google Scholar] [CrossRef]
- Cortés-Reyes, M.; Herrera, C.; Larrubia, M.Á.; Alemany, L. Hybrid Technology for DeNOxing by LNT-SCR System for Efficient Diesel Emission Control: Influence of Operation Parameters in H2O + CO2 Atmosphere. Catalysts 2020, 10, 228. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, A.; Price, K. Consolidation of DOC and DPF Functions into a Single Component; SAE Technical Paper; SAE International: Warrendale, PA, USA; Troy, MI, USA, 2019; pp. 1–17. [Google Scholar] [CrossRef]
- Sugino, T.; Tanaka, E.; Tran, H.; Aono, N. Development of Meshwork DPF Catalyst for Fuel Economy Improvement. SAE Int. J. Fuels Lubr. 2017, 10, 593–601. [Google Scholar] [CrossRef]
- Cao, C.; Xing, L.; Yang, Y.; Tian, Y.; Ding, T.; Zhang, J.; Hu, T.; Zheng, L.; Li, X. Diesel soot elimination over potassium-promoted Co3O4 nanowires monolithic catalysts under gravitation contact mode. Appl. Catal. B Environ. 2017, 218, 32–45. [Google Scholar] [CrossRef]
- Tang, X.; Wang, X.; Yang, L.; Zhang, Z.; Luo, J.; Wang, J. Multifunctional nickel nanofiber for effective air purification: PM removal and NO reduction from automobile exhaust. J. Mater. Sci. 2020, 5, 6161–6171. [Google Scholar] [CrossRef]
- Cui, B.; Zhou, L.; Li, K.; Liu, Y.-Q.; Wang, D.; Ye, Y.; Li, S. Holey Co-Ce oxide nanosheets as a highly efficient catalyst for diesel soot combustion. Appl. Catal. B Environ. 2020, 267, 118670. [Google Scholar] [CrossRef]
- Andana, T.; Piumetti, M.; Bensaid, S.; Russo, N.; Fino, D. Heterogeneous mechanism of NOx-assisted soot oxidation in the passive regeneration of a bench-scale diesel particulate filter catalyzed with nanostructured equimolar ceria-praseodymia. Appl. Catal. A Gen. 2019, 583, 117136. [Google Scholar] [CrossRef]
- Sartoretti, E.; Martini, F.; Piumetti, M.; Bensaid, S.; Russo, N.; Fino, D. Nanostructured Equimolar Ceria-Praseodymia for Total Oxidations in Low-O2 Conditions. Catalysts 2020, 10, 165. [Google Scholar] [CrossRef] [Green Version]
- Guillén-Hurtado, N.; Giménez-Mañogil, J.; Martínez-Munuera, J.; Bueno-López, A.; Garcia-Garcia, A. Study of Ce/Pr ratio in ceria-praseodymia catalysts for soot combustion under different atmospheres. Appl. Catal. A Gen. 2020, 590, 117339. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, T.V.; Homola, T.; Bryukvin, A.; Cameron, D.C. Catalytic Performance of Ag2O and Ag Doped CeO2 Prepared by Atomic Layer Deposition for Diesel Soot Oxidation. Coatings 2018, 8, 237. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Hu, W.; Zhang, N.; Li, Y.; Liao, Y. Facile synthesis of ceria–zirconia solid solutions with cubic–tetragonal interfaces and their enhanced catalytic performance in diesel soot oxidation. J. Catal. 2019, 377, 98–109. [Google Scholar] [CrossRef]
- Liu, G.; Yu, J.; Chen, L.; Feng, N.; Meng, J.; Fang, F.; Zhao, P.; Wang, L.; Wan, H.; Guan, G. Promoting Diesel Soot Combustion Efficiency over Hierarchical Brushlike α-MnO2 and Co3O4 Nanoarrays by Improving Reaction Sites. Ind. Eng. Chem. Res. 2019, 58, 13935–13949. [Google Scholar] [CrossRef]
- Feng, N.; Zhu, Z.; Zhao, P.; Wang, L.; Wan, H.; Guan, G. Facile fabrication of trepang-like CeO2@MnO2 nanocomposite with high catalytic activity for soot removal. Appl. Surf. Sci. 2020, 515, 146013. [Google Scholar] [CrossRef]
- O’Donnell, R.; Ralphs, K.; Grolleau, M.; Manyar, H.; Artioli, N. Doping Manganese Oxides with Ceria and Ceria Zirconia Using a One-Pot Sol–Gel Method for Low Temperature Diesel Oxidation Catalysts. Top. Catal. 2020, 1, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Camposeco, R.; Castillo, S.; Hinojosa-Reyes, M.; Nava, N.; Zanella, R. Manganese promoted TiO2 and ZrO2 nanostructures for soot combustion with boosted efficiency. Surf. Coat. Technol. 2020, 384, 125305. [Google Scholar] [CrossRef]
- Feng, X.; Liu, R.; Zhang, S.; He, J.; Xu, X.; Xu, J.; Fang, X.; Wang, X. Study on the Structure–Reactivity Relationship of LnMn2O5 (Ln = La, Pr, Sm, Y) Mullite Catalysts for Soot Combustion. Chem. Afr. 2020, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Orihuela, M.P.; Chacartegui, R.; Gomez-Martín, A.; Ramírez-Rico, J.; Becerra Villanueva, J.A. Performance trends in wall-flow diesel particulate filters: Comparative analysis of their filtration efficiency and pressure drop. J. Clean. Prod. 2020, 260. [Google Scholar] [CrossRef]
- Yamamoto, K.; Sakai, T. Effect of Pore Structure on Soot Deposition in Diesel Particulate Filter. Computation 2016, 4, 46. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Wu, Y.; Shen, B.; Kong, X.; Cai, N.; Liang, X.; Song, J. A Simulation Study on Particle Deposition and Filtration Characteristics in Wall-Flow DPF with Inhomogeneous Wall Structure Using a Two-Dimensional Microcosmic Model; SAE Technical Paper; SAE International: Warrendale, PA, USA; Troy, MI, USA, 2019; pp. 1–14. [Google Scholar] [CrossRef]
- Kong, X.; Li, Z.; Shen, B.; Wu, Y.; Zhang, Y.; Cai, N. Simulation of flow and soot particle distribution in wall-flow DPF based on lattice Boltzmann method. Chem. Eng. Sci. 2019, 202, 169–185. [Google Scholar] [CrossRef]
- Kontses, D.; Geivanidis, S.; Fragkiadoulakis, P.; Samaras, Z. Uncertainties in Model-Based Diesel Particulate Filter Diagnostics Using a Soot Sensor. Sensors 2019, 19, 3141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, Y.; Huang, T.; Zhang, M.; Jing, S.; Zhu, Y. DPF Soot Loading Estimation Strategy Based on Pressure Difference. IFAC-PapersOnLine 2018, 51, 366–368. [Google Scholar] [CrossRef]
- Kobashi, Y.; Oooka, S.; Jiang, L.; Goto, J.; Ogawa, H.; Shibata, G. An Investigation of the Transient DPF Pressure Drop under Cold Start Conditions in Diesel Engines; SAE Technical Paper; SAE International: Warrendale, PA, USA; Troy, MI, USA, 2017; Volume 1, p. 2372. [Google Scholar] [CrossRef]
- Tsujimoto, D.; Jin, K.; Fukuma, T. A Statistical Approach to Improve the Accuracy of the DPF Simulation Model under Transient Conditions; SAE Technical Paper; SAE International: Warrendale, PA, USA; Troy, MI, USA, 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Zhang, B.; Zuo, H.; Huang, Z.; Tan, J.; Zuo, Q. Endpoint forecast of different diesel-biodiesel soot filtration process in diesel particulate filters considering ash deposition. Fuel 2020, 272, 117678. [Google Scholar] [CrossRef]
- Tan, P.-Q.; Wang, D.-Y.; Yao, C.-J.; Zhu, L.; Wang, Y.-H.; Wang, M.-H.; Hu, Z.-Y.; Lou, D.-M. Extended filtration model for diesel particulate filter based on diesel particulate matter morphology characteristics. Fuel 2020, 277, 118150. [Google Scholar] [CrossRef]
- Fang, J.; Meng, Z.; Li, J.; Pu, Y.; Du, Y.; Li, J.; Jin, Z.; Chen, C.; Chase, G.G. The influence of ash on soot deposition and regeneration processes in diesel particular filter. Appl. Therm. Eng. 2017, 124, 633–640. [Google Scholar] [CrossRef]
- Zhang, J.; Wong, V.W.; Shuai, S.; Chen, Y.; Sappok, A. Quantitative estimation of the impact of ash accumulation on diesel particulate filter related fuel penalty for a typical modern on-road heavy-duty diesel engine. Appl. Energy 2018, 229, 1010–1023. [Google Scholar] [CrossRef]
- Kurien, C.; Srivastava, A.K.; Naudin, J. Modelling of regeneration and filtration mechanism in diesel particulate filter for development of composite regeneration emission control system. Arch. Mech. Eng. 2018, 2, 277–290. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, W.; Yu, W.; Li, H.; Sim, Y.Y.; Liu, T.; Tay, K.L. Numerical study of soot particles from low temperature combustion of engine fueled with diesel fuel and unsaturation biodiesel fuels. Appl. Energy 2018, 211, 187–193. [Google Scholar] [CrossRef]
- Lao, C.T.; Akroyd, J.; Eaves, N.A.; Smith, A.; Morgan, N.; Bhave, A.; Kraft, M. Modelling particle mass and particle number emissions during the active regeneration of diesel particulate filters. Proc. Combust. Inst. 2019, 37, 4831–4838. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Lou, D.; Zhang, Y.; Lu, K.; Liu, S. Application Study on a New Hybrid Canning Structure of After-Treatment System for Diesel Engine. Energies 2020, 13, 734. [Google Scholar] [CrossRef] [Green Version]
- Lao, C.T.; Akroyd, J.; Eaves, N.; Smith, A.; Morgan, N.; Nurkowski, D.; Bhave, A.; Kraft, M. Investigation of the impact of the configuration of exhaust after-treatment system for diesel engines. Appl. Energy 2020, 267, 114844. [Google Scholar] [CrossRef]
- Apicella, B.; Mancaruso, E.; Russo, C.; Tregrossi, A.; Oliano, M.M.; Ciajolo, A.; Vaglieco, B.M. Effect of after-treatment systems on particulate matter emissions in diesel engine exhaust. Exp. Therm. Fluid Sci. 2020, 116, 110107. [Google Scholar] [CrossRef]
- Eck, C.; Nakano, F. Robust DPF Regeneration Control for Cost-Effective Small Commercial Vehicles; SAE Technical Paper; SAE International: Warrendale, PA, USA; Troy, MI, USA, 2017. [Google Scholar]
- Di Sarli, V.; Di Benedetto, A. Using CFD Simulation as a Tool to Identify Optimal Operating Conditions for Regeneration of a Catalytic Diesel Particulate Filter. Appl. Sci. 2019, 9, 3453. [Google Scholar] [CrossRef] [Green Version]
- Payri, F.; Arnau, F.J.; Piqueras, P.; Ruiz, M.J. Lumped Approach for Flow-Through and Wall-Flow Monolithic Reactors Modelling for Real-Time Automotive Applications; SAE Technical Paper; SAE International: Warrendale, PA, USA; Troy, MI, USA, 2018; pp. 1–24. [Google Scholar] [CrossRef]
- Olowojebutu, S.; Steffen, T. A Review of the Literature on Modelling of Integrated SCR-in-DPF Systems; SAE Technical Paper; SAE International: Warrendale, PA, USA; Troy, MI, USA, 2017. [Google Scholar] [CrossRef]
- Trandafilovic, L.V.; Mihai, O.; Woo, J.; Leistner, K.; Stenfeldt, M.; Olsson, L. A kinetic model for SCR coated particulate filters—Effect of ammonia-soot interactions. Appl. Catal. B Environ. 2019, 241, 66–80. [Google Scholar] [CrossRef]
- Zamboni, G.; Moggia, S.; Capobianco, M. Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine. Energies 2017, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Liu, Z.; Han, Y.; Tian, J.; Wang, J.; Fang, J. Experimental Investigation of the Loading Strategy of an Automotive Diesel Engine under Transient Operation Conditions. Energies 2018, 11, 1293. [Google Scholar] [CrossRef] [Green Version]
- Nanthagopal, K.; Kishna, R.S.; Atabani, A.; Al-Muhtaseb, A.H.; Kumar, G.; Ashok, B. A compressive review on the effects of alcohols and nanoparticles as an oxygenated enhancer in compression ignition engine. Energy Convers. Manag. 2020, 203, 112244. [Google Scholar] [CrossRef]
- Choi, K.; Park, S.; Roh, H.G.; Lee, C.S. Combustion and Emission Reduction Characteristics of GTL-Biodiesel Fuel in a Single-Cylinder Diesel Engine. Energies 2019, 12, 2201. [Google Scholar] [CrossRef] [Green Version]
- Chiatti, G.; Chiavola, O.; Palmieri, F. Impact on Combustion and Emissions of Jet Fuel as Additive in Diesel Engine Fueled with Blends of Petrol Diesel, Renewable Diesel and Waste Cooking Oil Biodiesel. Energies 2019, 12, 2488. [Google Scholar] [CrossRef] [Green Version]
- Tutak, W.; Grab-Rogaliński, K.; Jamrozik, A. Combustion and Emission Characteristics of a Biodiesel-Hydrogen Dual-Fuel Engine. Appl. Sci. 2020, 10, 1082. [Google Scholar] [CrossRef] [Green Version]
- Aguado-Deblas, L.; Hidalgo-Carrillo, J.; Bautista, F.M.; Luna, D.; Luna, C.; Calero, J.; Posadillo, A.; Romero, A.A.; Estevez, F. Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine. Energies 2020, 13, 1542. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Deng, L.; Guo, J.; Zhang, M.; Zi, Z.; Zhang, J.; Wu, B. Effect of Injection Strategies in Diesel/NG Direct-Injection Engines on the Combustion Process and Emissions under Low-Load Operating Conditions. Energies 2020, 13, 990. [Google Scholar] [CrossRef] [Green Version]
- Dewangan, A.; Mallick, A.; Yadav, A.K.; Richhariya, A.K. Effect of metal oxide nanoparticles and engine parameters on the performance of a diesel engine: A review. Mater. Today Proc. 2020, 21, 1722–1727. [Google Scholar] [CrossRef]
- Zhang, Z.; Balasubramanian, R. Effects of Cerium Oxide and Ferrocene Nanoparticles Addition as Fuel-Borne Catalysts on Diesel Engine Particulate Emissions: Environmental and Health Implications. Environ. Sci. Technol. 2017, 51, 4248–4258. [Google Scholar] [CrossRef] [PubMed]
- Ashok, B.; Nanthagopal, K.; Chyuan, O.H.; Le, P.T.K.; Khanolkar, K.; Raje, N.; Raj, A.; Karthickeyan, V.; Tamilvanan, A. Multi-functional fuel additive as a combustion catalyst for diesel and biodiesel in CI engine characteristics. Fuel 2020, 278, 118250. [Google Scholar] [CrossRef]
- Elkelawy, M.; Kabeel, A.E.; El Shenawy, E.; Panchal, H.; Elbanna, A.; Bastawissi, H.A.-E.; Sadasivuni, K.K. Experimental investigation on the influences of acetone organic compound additives into the diesel/biodiesel mixture in CI engine. Sustain. Energy Technol. Assess. 2020, 37, 100614. [Google Scholar] [CrossRef]
- Dobrzyńska, E.; Szewczyńska, M.; Pośniak, M.; Szczotka, A.; Puchałka, B.; Woodburn, J.; Elżbieta, D.; Małgorzata, S.; Andrzej, S.; Bartosz, P. Exhaust emissions from diesel engines fueled by different blends with the addition of nanomodifiers and hydrotreated vegetable oil HVO. Environ. Pollut. 2020, 259, 113772. [Google Scholar] [CrossRef]
- Amid, S.; Aghbashlo, M.; Tabatabaei, M.; Hajiahmad, A.; Najafi, B.; Ghaziaskar, H.S.; Rastegari, H.; Hosseinzadeh-Bandbafha, H.; Mohammadi, P. Effects of waste-derived ethylene glycol diacetate as a novel oxygenated additive on performance and emission characteristics of a diesel engine fueled with diesel/biodiesel blends. Energy Convers. Manag. 2020, 203, 112245. [Google Scholar] [CrossRef]
- Chacko, N.; Jeyaseelan, T. Comparative evaluation of graphene oxide and graphene nanoplatelets as fuel additives on the combustion and emission characteristics of a diesel engine fuelled with diesel and biodiesel blend. Fuel Process. Technol. 2020, 204. [Google Scholar] [CrossRef]
- Heidari-Maleni, A.; Gundoshmian, T.M.; Karimi, B.; Jahanbakhshi, A.; Ghobadian, B. A novel fuel based on biocompatible nanoparticles and ethanol-biodiesel blends to improve diesel engines performance and reduce exhaust emissions. Fuel 2020, 276. [Google Scholar] [CrossRef]
- Gad, M.S.; Jayaraj, S. A comparative study on the effect of nano-additives on the performance and emissions of a diesel engine run on Jatropha biodiesel. Fuel 2020, 267, 117168. [Google Scholar] [CrossRef]
Date | CO g km−1 | HC g km−1 | HC + NOx g km−1 | NOx g km−1 | PM g km−1 | PN Particle Number km−1 | |
---|---|---|---|---|---|---|---|
Gasoline | |||||||
Euro 1 | 1992 | 2.72 | - | 0.97 | - | - | - |
Euro 2 | 1996 | 2.2 | - | 0.5 | - | - | - |
Euro 3 | 2000 | 2.3 | 0.2 | - | 0.15 | - | - |
Euro 4 | 2005 | 1.0 | 0.1 | - | 0.08 | - | - |
Euro 5 | 2009 | 1.0 | 0.1 | - | 0.06 | 0.005 | - |
Euro 6 | 2014 | 1.0 | 0.1 | - | 0.06 | 0.005 | 6 × 1011 |
Diesel | |||||||
Euro 1 | 1992 | 2.72 | - | 0.97 | - | - | - |
Euro 2, IDI | 1996 | 1.0 | - | 0.7 | - | 0.08 | - |
Euro 2, DI | 1996 | 1.0 | - | 0.9 | - | 0.10 | - |
Euro 3 | 2000 | 0.64 | - | 0.56 | 0.5 | 0.05 | - |
Euro 4 | 2005 | 0.5 | - | 0.3 | 0.25 | 0.025 | - |
Euro 5a | 2009 | 0.5 | - | 0.23 | 0.18 | 0.005 | - |
Euro 5b | 2011 | 0.5 | - | 0.23 | 0.18 | 0.005 | 6 × 1011 |
Euro 6 | 2014 | 0.5 | - | 0.17 | 0.08 | 0.005 | 6 ×1 011 |
Date | CO g kWh−1 | HC g kWh−1 | NOx g kWh−1 | PM mg kWh−1 | PN Particle Number kWh−1 | Smoke m−1 | |
---|---|---|---|---|---|---|---|
Euro 1, <85 kW | 1992 | 4.5 | 1.1 | 8.0 | 612 | - | - |
Euro 1, >85 kW | 1992 | 4.5 | 1.1 | 8.0 | 360 | - | - |
Euro 2a | 1996 | 4.0 | 1.1 | 7.0 | 250 | - | - |
Euro 2b | 1998 | 4.0 | 1.1 | 7.0 | 150 | - | - |
Euro 3 | 2000 | 2.1 | 0.66 | 5.0 | 100 | - | 0.8 |
Euro 4 | 2005 | 1.5 | 0.46 | 3.5 | 20 | - | 0.5 |
Euro 5 | 2008 | 1.5 | 0.46 | 2.0 | 20 | - | 0.5 |
Euro 6 | 2013 | 1.5 | 0.13 | 0.4 | 10 | 8 × 1011 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meloni, E.; Palma, V. Most Recent Advances in Diesel Engine Catalytic Soot Abatement: Structured Catalysts and Alternative Approaches. Catalysts 2020, 10, 745. https://doi.org/10.3390/catal10070745
Meloni E, Palma V. Most Recent Advances in Diesel Engine Catalytic Soot Abatement: Structured Catalysts and Alternative Approaches. Catalysts. 2020; 10(7):745. https://doi.org/10.3390/catal10070745
Chicago/Turabian StyleMeloni, Eugenio, and Vincenzo Palma. 2020. "Most Recent Advances in Diesel Engine Catalytic Soot Abatement: Structured Catalysts and Alternative Approaches" Catalysts 10, no. 7: 745. https://doi.org/10.3390/catal10070745
APA StyleMeloni, E., & Palma, V. (2020). Most Recent Advances in Diesel Engine Catalytic Soot Abatement: Structured Catalysts and Alternative Approaches. Catalysts, 10(7), 745. https://doi.org/10.3390/catal10070745