The Effect of Tourmaline on SCR Denitrification Activity of MnOx/TiO2 at Low Temperature
Abstract
:1. Introduction
2. Results and Discussion
2.1. Activity Evaluation of Catalytic Materials
2.2. Stability Evaluation of Catalytic Materials
2.3. Phase Analysis of Catalytic Materials
2.4. Analysis of Specific Surface Area and Pore Structure of Catalytic Materials
2.5. Surface Acid Sites Analysis of Catalytic Materials
2.6. Valence State Analysis of Surface Elements of Catalytic Materials
2.7. DFT Study
3. Materials and Methods
3.1. Experimental Materials
3.2. Catalytic Preparation
3.3. Testing Methods and Instruments
3.4. Calculation Details
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SCR | Selective Catalytic Reduction |
DFT | Density Functional Theory |
References
- Li, X. Optimization and reconstruction technology of SCR flue gas denitrification ultra low emission in coal fired power plant. IOP Conf. Ser. Mater. Sci. Eng. 2017, 231, 012111. [Google Scholar] [CrossRef]
- Hu, Y.-F.; Bai, Y.-F. SCR denitration Technology and its Application. Energy Conserv. Technol. 2007, 25, 152–156. [Google Scholar]
- Johannessen, T.; Koutsopoulos, S. One-Step Flame Synthesis of an Active Pt/TiO2 Catalyst for SO2 Oxidation—A Possible Alternative to Traditional Methods for Parallel Screening. J. Catal. 2002, 205, 404–408. [Google Scholar] [CrossRef]
- Zhuang, K.; Zhang, Y.; Huang, T.; Lu, B.; Shen, K. Sulfur-poisoning and thermal reduction regeneration of holmium-modified Fe-Mn/TiO2 catalyst for low-temperature SCR. J. Fuel Chem. Technol. 2017, 45, 1356–1364. [Google Scholar] [CrossRef]
- Dunn, P.J.; Appleman, D.; Nelen, J.A.; Norberg, J. Uvite, a new (old) common member of the tourmaline group and its implications for collectors. Mineral. Rec. 1977, 8, 100–108. [Google Scholar]
- Ruan, D.; Zhang, L.; Zhang, Z.; Xia, X. Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 367–373. [Google Scholar] [CrossRef]
- Huang, F.; Guo, Y.; Wang, S.; Zhang, S.; Cui, M. Solgel-hydrothermal synthesis of Tb/Tourmaline/TiO2 nano tubes and enhanced photocatalytic activity. Solid State Sci. 2017, 64, 62–68. [Google Scholar] [CrossRef]
- Liu, F.; He, H.; Xie, L. XAFS Study on the Specific Deoxidation Behavior of Iron Titanate Catalyst for the Selective Catalytic Reduction of NOx with NH3. ChemCatChem 2013, 5, 3760–3769. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Ge, M.; Zhu, R. Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia. Catal. Today 2010, 153, 77–83. [Google Scholar] [CrossRef]
- Won, J.M.; Kim, M.S.; Hong, S.C. Effect of vanadium surface density and structure in VOx/TiO2 on selective catalytic reduction by NH3. Korean J. Chem. Eng. 2018, 35, 2365–2378. [Google Scholar] [CrossRef]
- Michalow-Mauke, K.A.; Lu, Y.; Kowalski, K.; Graule, T.; Nachtegaal, M.; Kröcher, O.; Ferri, D. Flame-Made WO3/CeOx-TiO2 Catalysts for Selective Catalytic Reduction of NOx by NH3. ACS Catal. 2015, 5, 5657–5672. [Google Scholar] [CrossRef]
- Yao, X.; Zhao, R.; Chen, L.; Du, J.; Tao, C.; Yang, F.; Dong, L. Selective catalytic reduction of NOx by NH3 over CeO2 supported on TiO2: Comparison of anatase, brookite, and rutile. Appl. Catal. B Environ. 2017, 208, 82–93. [Google Scholar] [CrossRef]
- Xia, F.; Song, Z.; Liu, X.; Liu, X.; Yang, Y.; Zhang, Q.; Peng, J. Improved catalytic activity and N2 selectivity of Fe–Mn–Ox catalyst for selective catalytic reduction of NO by NH3 at low temperature. Res. Chem. Intermed. 2018, 44, 2703–2717. [Google Scholar] [CrossRef]
- Qi, K.; Xie, J.; Mei, D.; He, F.; Fang, D. The utilization of fly ash-MnOx /FA catalysts for NOx removal. Mater. Res. Express 2018, 5, 065526. [Google Scholar] [CrossRef]
- Huang, J.; Huang, H.; Liu, L.; Jiang, H. Revisit the effect of manganese oxidation state on activity in low-temperature NO-SCR. Mol. Catal. 2018, 446, 49–57. [Google Scholar] [CrossRef]
- Lian, Z.; Shan, W.; Zhang, Y.; Wang, M.; He, H. Morphology-Dependent Catalytic Performance of NbOx/CeO2 Catalysts for Selective Catalytic Reduction of NOx with NH3. Ind. Eng. Chem. Res. 2018, 57, 12736–12741. [Google Scholar] [CrossRef]
- Meng, B.; Zhao, Z.; Chen, Y.; Wang, X.; Li, Y.; Qiu, J. Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia. Chem. Commun. 2014, 50, 12396–12399. [Google Scholar] [CrossRef] [Green Version]
- Lai, X.; Roberts, K.J.; Avanci, L.H.; Cardoso, L.P.; Sasaki, J.M. Habit modification of nearly perfect single crystals of potassium dihydrogen phosphate (KDP) by trivalent manganese ions studied using synchrotron radiation X-ray multiple diffraction in Renninger scanning mode. J. Appl. Crystallogr. 2003, 36, 1230–1235. [Google Scholar] [CrossRef] [Green Version]
- Rui-Hua, W.U.; Yun-Hui, T.; Xiao-Hui, Z. The Electrostatic Field Effect of Tourmaline Particles and the Prospect of Its Application to Environmental Protection Field. Acta Petrol. Mineral. 2001, 20, 474–476. [Google Scholar]
- Wei, L.; Cui, S.; Guo, H.; Zhang, L. The effect of alkali metal over Mn/TiO2 for low-temperature SCR of NO with NH3 through DRIFT and DFT. Comput. Mater. Sci. 2018, 144, 216–222. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, J.; Kaneko, M. Electron transfer in the redox reaction of cobalt tetraphenylporphyrin incorporated in a Nafion film. J. Porphyr. Phthalocyanines 2000, 4, 158–167. [Google Scholar] [CrossRef]
Sample | SBET /(m2/g) | Pore Volume /(×10−2 cm3/g) | Average Pore Diameter /(nm) |
---|---|---|---|
MnOx/TiO2 | 80.8 | 23.5 | 10.1 |
5% tourmaline | 88.3 | 27.1 | 10.8 |
10% tourmaline | 98.7 | 28.1 | 11.3 |
20% tourmaline | 90.5 | 25.3 | 11.1 |
Sample | Element Content (%) | ||||
---|---|---|---|---|---|
MnOx | Mn3+/Mn4+ | TiO2 | SiO2 | Fe2O3 | |
Pre doping | 38.77 | 0.89 | 16.55 | 21.06 | 9.96 |
After doping | 45.35 | 1.09 | 11.68 | 19.54 | 12.66 |
Cycle | Total Energy (Ha) | Energy Change | Max Gradient | Max Displacement | ||
---|---|---|---|---|---|---|
Mn3O4/TiO2 | opt== | 63 | −2822.276 | −0.0000562 | 0.001697 | 0.024240 |
NO | opt== | 6 | −129.921 | −0.0000048 | 0.000171 | 0.000048 |
NH3 | opt== | 4 | −56.570 | −0.0000234 | 0.000503 | 0.002988 |
Mn3O4/TiO2 + NO | opt== | 45 | −2952.384 | −0.0000446 | 0.001372 | 0.009183 |
Mn3O4/TiO2 + NH3 | opt== | 15 | −2878.904 | −0.0000503 | 0.001845 | 0.026919 |
%. | TiO2 | SiO2 | SO3 | MnO | Fe2O3 | CaO |
---|---|---|---|---|---|---|
Acid residue | 22.2370 | 34.0827 | 18.8343 | 0.9559 | 8.8500 | 8.4181 |
% | B2O3 | SiO2 | MgO | Al2O3 | FeO | Others |
---|---|---|---|---|---|---|
Tourmaline | 10.08 | 35.23 | 4.00 | 33.55 | 8.50 | 8.64 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helian, Y.; Cui, S.; Ma, X. The Effect of Tourmaline on SCR Denitrification Activity of MnOx/TiO2 at Low Temperature. Catalysts 2020, 10, 1020. https://doi.org/10.3390/catal10091020
Helian Y, Cui S, Ma X. The Effect of Tourmaline on SCR Denitrification Activity of MnOx/TiO2 at Low Temperature. Catalysts. 2020; 10(9):1020. https://doi.org/10.3390/catal10091020
Chicago/Turabian StyleHelian, Yizhe, Suping Cui, and Xiaoyu Ma. 2020. "The Effect of Tourmaline on SCR Denitrification Activity of MnOx/TiO2 at Low Temperature" Catalysts 10, no. 9: 1020. https://doi.org/10.3390/catal10091020
APA StyleHelian, Y., Cui, S., & Ma, X. (2020). The Effect of Tourmaline on SCR Denitrification Activity of MnOx/TiO2 at Low Temperature. Catalysts, 10(9), 1020. https://doi.org/10.3390/catal10091020