Facile Fabrication of Rhodium/Nanodiamond Hybrid as Advanced Catalyst toward Hydrogen Production from Ammonia–Borane
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Preparation of Rh/Nano-DA and Concomitant AB Hydrolysis
4.3. Characterization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, X.; Wang, H.; Ming, M.; Luo, W.; Wang, Y.; Yang, Y.; Zhang, Y.; Gao, D.; Bi, J.; Fan, G. Well-Defined Ru Nanoclusters Anchored on Carbon: Facile Synthesis and High Electrochemical Activity toward Alkaline Water Splitting. ACS Sustain. Chem. Eng. 2018, 6, 11487–11492. [Google Scholar] [CrossRef]
- Xu, C.; Wang, H.; Wang, Q.; Wang, Y.; Zhang, Y.; Fan, G. Ruthenium coordinated with triphenylphosphine-hyper-crosslinked polymer: An efficient catalyst for hydrogen evolution reaction and hydrolysis of ammonia borane. Appl. Surf. Sci. 2019, 466, 193–201. [Google Scholar] [CrossRef]
- Hu, M.; Chen, Q.; Ding, R.; Wu, J.; Wang, Y.; Zhang, Y.; Fan, G. Spatially localized fabrication of uniform Rh nanoclusters on nanosheet-assembled hierarchical carbon architectures as excellent electrocatalysts for boosting alkaline hydrogen evolution. Int. J. Hydrog. Energy 2020, 45, 8118–8125. [Google Scholar] [CrossRef]
- Li, S.-L.; Xu, Q. Metal–organic frameworks as platforms for clean energy. Energy Environ. Sci. 2013, 6, 1656–1683. [Google Scholar] [CrossRef]
- Luo, W.; Campbell, P.G.; Zakharov, L.N.; Liu, S.-Y. A Single-Component Liquid-Phase Hydrogen Storage Material. J. Am. Chem. Soc. 2011, 133, 19326–19329. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Chen, Q.; Wu, J.; Fan, G. Anchoring and space-confinement effects to synthesize ultrasmall Pd nanoparticles for efficient ammonia borane hydrolysis. Int. J. Hydrog. Energy 2020. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Q.; Fan, G. Smart construction of oxidized-Ti3C2TX stabilized Rh nanoparticles for remarkable improving the catalytic performance for ammonia borane hydrolysis. Int. J. Hydrog. Energy 2020. [Google Scholar] [CrossRef]
- Xu, C.; Hu, M.; Wang, Q.; Fan, G.; Wang, Y.; Zhang, Y.; Gao, D.-J.; Bi, J. Hyper-cross-linked polymer supported rhodium: An effective catalyst for hydrogen evolution from ammonia borane. Dalton Trans. 2018, 47, 2561–2567. [Google Scholar] [CrossRef]
- Zhong, F.; Wang, Q.; Xu, C.; Yang, Y.; Wang, Y.; Zhang, Y.; Gao, D.-J.; Bi, J.; Fan, G. Ultrafine and highly dispersed Ru nanoparticles supported on nitrogen-doped carbon nanosheets: Efficient catalysts for ammonia borane hydrolysis. Appl. Surf. Sci. 2018, 455, 326–332. [Google Scholar] [CrossRef]
- Hou, C.-C.; Li, Q.; Wang, C.-J.; Peng, C.-Y.; Chen, Q.-Q.; Ye, H.-F.; Fu, W.-F.; Che, C.-M.; Lopez, N.; Chen, Y. Ternary Ni–Co–P nanoparticles as noble-metal-free catalysts to boost the hydrolytic dehydrogenation of ammonia-borane. Energy Environ. Sci. 2017, 10, 1770–1776. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Li, X.; Ma, Y.; Zhang, Y.; Wu, J.; Xu, B.; Sun, T.; Gao, D.-J.; Bi, J. Magnetic, recyclable PtyCo1−y/Ti3C2X2 (X = O, F) catalyst: A facile synthesis and enhanced catalytic activity for hydrogen generation from the hydrolysis of ammonia borane. New J. Chem. 2017, 41, 2793–2799. [Google Scholar] [CrossRef]
- Zhan, W.-W.; Zhu, Q.-L.; Xu, Q. Dehydrogenation of Ammonia Borane by Metal Nanoparticle Catalysts. ACS Catal. 2016, 6, 6892–6905. [Google Scholar] [CrossRef]
- Wen, L.; Su, J.; Wu, X.; Cai, P.; Luo, W.; Cheng, G. Ruthenium supported on MIL-96: An efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Int. J. Hydrog. Energy 2014, 39, 17129–17135. [Google Scholar] [CrossRef]
- Xu, C.; Ming, M.; Wang, Q.; Yang, C.; Fan, G.; Wang, Y.; Gao, D.-J.; Bi, J.; Zhang, Y. Facile synthesis of effective Ru nanoparticles on carbon by adsorption-low temperature pyrolysis strategy for hydrogen evolution. J. Mater. Chem. A 2018, 6, 14380–14386. [Google Scholar] [CrossRef]
- Hu, M.; Ming, M.; Xu, C.; Wang, Y.; Zhang, Y.; Gao, D.-J.; Bi, J.; Fan, G. Towards High-Efficiency Hydrogen Production through in situ Formation of Well-Dispersed Rhodium Nanoclusters. ChemSusChem 2018, 11, 3253–3258. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ji, J.; Duan, X.; Qian, G.; Li, P.; Zhou, X.; Chen, D.; Yuan, W. Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. Chem. Commun. 2014, 50, 2142–2144. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Zhang, W.; Zhao, X.; Qiu, J.; Li, A.; Zheng, X.; Hu, Z.; Si, R.; Zeng, J. Supported rhodium catalysts for ammonia–borane hydrolysis: Dependence of the catalytic activity on the highest occupied state of the single rhodium atoms. Angew. Chem. Int. Ed. 2017, 56, 4712–4718. [Google Scholar] [CrossRef]
- Akbayrak, S.; Tonbul, Y.; Özkar, S. Ceria supported rhodium nanoparticles: Superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane. Appl. Catal. B Environ. 2016, 198, 162–170. [Google Scholar] [CrossRef]
- Liu, H.; Xu, C.; Lu, R.; Wang, Q.; Wu, J.; Wang, Y.; Zhang, Y.; Sun, T.; Fan, G. Efficient hydrogen evolution from ammonia borane hydrolysis with Rh decorated on phosphorus-doped carbon. Int. J. Hydrog. Energy 2019, 44, 16548–16556. [Google Scholar] [CrossRef]
- Zahmakıran, M.; Özkar, S. Zeolite framework stabilized rhodium(0) nanoclusters catalyst for the hydrolysis of ammonia-borane in air: Outstanding catalytic activity, reusability and lifetime. Appl. Catal. Environ. 2009, 89, 104–110. [Google Scholar] [CrossRef]
- Durap, F.; Zahmakıran, M.; Özkar, S. Water soluble laurate-stabilized rhodium(0) nanoclusters catalyst with unprecedented catalytic lifetime in the hydrolytic dehydrogenation of ammonia-borane. Appl. Catal. Gen. 2009, 369, 53–59. [Google Scholar] [CrossRef]
- Clark, T.J.; Whittell, G.R.; Manners, I. Highly efficient colloidal cobalt- and rhodium-catalyzed hydrolysis of H3N·BH3 in air. Inorg. Chem. 2007, 46, 7522–7527. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Shi, W.; Feng, G.; Lu, Z.-H.; Zhang, X.-L.; Tao, D.-J.; Kong, D.; Chen, X. Ultrafine Ru nanoparticles embedded in SiO2 nanospheres: Highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. J. Power Sources 2014, 257, 293–299. [Google Scholar] [CrossRef]
- Akbayrak, S.; Gençtürk, S.; Morkan, I.; Özkar, S. Rhodium(0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane. RSC Adv. 2014, 4, 13742–13748. [Google Scholar] [CrossRef]
- Ma, Y.; Li, X.; Zhang, Y.; Chen, L.; Wu, J.; Gao, D.; Bi, J.; Fan, G. Ruthenium nanoparticles supported on TiO2 (B) nanotubes: Effective catalysts in hydrogen evolution from the hydrolysis of ammonia borane. J. Alloy. Compd. 2017, 708, 270–277. [Google Scholar] [CrossRef]
- Tonbul, Y.; Akbayrak, S.; Özkar, S. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane. J. Colloid Interface Sci. 2019, 553, 581–587. [Google Scholar] [CrossRef]
- Shen, J.; Yang, L.; Hu, K.; Luo, W.; Cheng, G. Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage. Int. J. Hydrog. Energy 2015, 40, 1062–1070. [Google Scholar] [CrossRef]
- Morimune, S.; Kotera, M.; Nishino, T.; Goto, K.; Hata, K. Poly(vinyl alcohol) Nanocomposites with Nanodiamond. Macromolecules 2011, 44, 4415–4421. [Google Scholar] [CrossRef]
- Duan, X.; An, T.; Li, D.; Sun, H.; Zhou, L.; Suvorova, A.A.; Saunders, M.; Wang, G.X.; Wang, S. Surface-tailored nanodiamonds as excellent metal-free catalysts for organic oxidation. Carbon 2016, 103, 404–411. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Quan, X.; Yu, H.; Zhao, H.; Zhang, Y.; Chen, G. Boron and Nitrogen Codoped Nanodiamond as an Efficient Metal-Free Catalyst for Oxygen Reduction Reaction. J. Phys. Chem. C 2013, 117, 14992–14998. [Google Scholar] [CrossRef]
- Fan, G.; Liu, Q.; Tang, D.; Li, X.; Bi, J.; Gao, D. Nanodiamond supported Ru nanoparticles as an effective catalyst for hydrogen evolution from hydrolysis of ammonia borane. Int. J. Hydrog. Energy 2016, 41, 1542–1549. [Google Scholar] [CrossRef]
- Chen, X.; Tian, X.; Zhou, Z.; Jiang, M.; Lu, J.; Wang, Y.; Wang, L. Effective improvement in microwave absorption by uniform dispersion of nanodiamond in polyaniline through in-situ polymerization. Appl. Phys. Lett. 2015, 106, 233103. [Google Scholar] [CrossRef]
- Wang, Q.; Ming, M.; Niu, S.; Zhang, Y.; Fan, G.; Hu, J.-S. Scalable Solid-State Synthesis of Highly Dispersed Uncapped Metal (Rh, Ru, Ir) Nanoparticles for Efficient Hydrogen Evolution. Adv. Energy Mater. 2018, 8. [Google Scholar] [CrossRef]
- Ma, Y.; Li, L.; Wang, L.; Luo, R.; Xu, S.; Wu, F.; Chen, R. Effect of metal ion concentration in precursor solution on structure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2. J. Alloy. Compd. 2019, 778, 643–651. [Google Scholar] [CrossRef]
- Zhang, H.H.; Liu, Y.T.; Wang, R.; Yu, X.Y.; Qu, X.W.; Zhang, Q.X. Functionalization of nanodiamond with epoxy monomer. Chin. Chem. Lett. 2011, 22, 485–488. [Google Scholar] [CrossRef]
- Teimouri, A.; Mahmoudsalehi, M.; Salavati, H. Catalytic oxidative desulfurization of dibenzothiophene utilizing molybdenum and vanadium oxides supported on MCM-41. Int. J. Hydrog. Energy 2018, 43, 14816–14833. [Google Scholar] [CrossRef]
- Zhang, T.; Xing, Y.; Song, Y.; Gu, Y.; Yan, X.; Lu, N.; Liu, H.; Xu, Z.; Xu, H.; Zhang, Z.; et al. AuPt/MOF–Graphene: A Synergistic Catalyst with Surprisingly High Peroxidase-Like Activity and Its Application for H2O2 Detection. Anal. Chem. 2019, 91, 10589–10595. [Google Scholar] [CrossRef]
- Şen, B.; Akdere, E.H.; Şavk, A.; Gültekin, E.; Paralı, Ö.; Göksu, H.; Şen, F. A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile. Appl. Catal. Environ. 2018, 225, 148–153. [Google Scholar] [CrossRef]
- László, B.; Baán, K.; Varga, E.; Oszkó, A.; Erdőhelyi, A.; Kónya, Z.; Kiss, J. Photo-induced reactions in the CO 2 -methane system on titanate nanotubes modified with Au and Rh nanoparticles. Appl. Catal. Environ. 2016, 199, 473–484. [Google Scholar] [CrossRef]
- Ming, M.; Ren, Y.; Hu, M.; Zhang, Y.; Sun, T.; Ma, Y.; Li, X.; Jiang, W.; Gao, D.-J.; Bi, J.; et al. Promoted effect of alkalization on the catalytic performance of Rh/alk-Ti 3 C 2 X 2 (X O, F) for the hydrodechlorination of chlorophenols in base-free aqueous medium. Appl. Catal. Environ. 2017, 210, 462–469. [Google Scholar] [CrossRef]
- Göde, C.; Yola, M.L.; Yılmaz, A.; Atar, N.; Wang, S. A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: Application to simultaneous determination of Fe(III), Cd(II) and Pb(II) ions. J. Colloid Interface Sci. 2017, 508, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-C.; Hsu, M.-H.; Lu, H.-I.; Lai, M.-C.; Liu, P.-J.; Hsu, C.-H.; Ji, W.-F.; Chuang, T.-L.; Wei, Y.; Yeh, J.-M.; et al. Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel. Carbon 2014, 66, 144–153. [Google Scholar] [CrossRef]
- Zhang, L.; Aminu, I.S.; Ren, X.; Liu, Z.; Du, G.; Asiri, A.M.; Zheng, B.; Sun, X. Surface Modification of a NiS2 Nanoarray with Ni(OH)2 toward Superior Water Reduction Electrocatalysis in Alkaline Media. Inorg. Chem. 2017, 56, 13651–13654. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-Z.; Xiao, K.; Li, N.; Liu, Z.-Q.; Qiao, S.-Z. Amorphous Ni(OH)2 @ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 13845–13853. [Google Scholar] [CrossRef]
- Li, X.; Zeng, C.; Fan, G. Ultrafast hydrogen generation from the hydrolysis of ammonia borane catalyzed by highly efficient bimetallic RuNi nanoparticles stabilized on Ti3C2X2 (X = OH and/or F). Int. J. Hydrog. Energy 2015, 40, 3883–3891. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, F.; Liang, J.; Chen, J. Hydrogen generation by hydrolysis of ammonia borane with a nanoporous cobalt–tungsten–boron–phosphorus catalyst supported on Ni foam. Int. J. Hydrog. Energy 2011, 36, 1411–1417. [Google Scholar] [CrossRef]
- Ding, R.; Chen, Q.; Luo, Q.; Zhou, L.; Wang, Y.; Zhang, Y.; Fan, G. Salt template-assisted in situ construction of Ru nanoclusters and porous carbon: Excellent catalysts toward hydrogen evolution, ammonia-borane hydrolysis, and 4-nitrophenol reduction. Green Chem. 2020, 22, 835–842. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, Q.; Qiu, C.; Ma, X.; Wang, Y.; Sun, T.; Fan, G. Synergistic catalysis of Pd–Ni(OH)2 hybrid anchored on porous carbon for hydrogen evolution from the dehydrogenation of formic acid. Int. J. Hydrog. Energy 2020, 45, 12849–12858. [Google Scholar] [CrossRef]
- Ming, M.; Zhang, Y.; He, C.; Zhao, L.; Niu, S.; Fan, G.; Hu, J.-S. Room-Temperature Sustainable Synthesis of Selected Platinum Group Metal (PGM = Ir, Rh, and Ru) Nanocatalysts Well-Dispersed on Porous Carbon for Efficient Hydrogen Evolution and Oxidation. Small 2019, 15, e1903057. [Google Scholar] [CrossRef]
- Zhu, J.; Li, R.; Niu, W.; Wu, Y.; Gou, X. Fast hydrogen generation from NaBH4 hydrolysis catalyzed by carbon aerogels supported cobalt nanoparticles. Int. J. Hydrog. Energy 2013, 38, 10864–10870. [Google Scholar] [CrossRef]
- Chen, J.; Hu, M.; Ming, M.; Xu, C.; Wang, Y.; Zhang, Y.; Wu, J.; Gao, D.; Bi, J.; Fan, G. Carbon-supported small Rh nanoparticles prepared with sodium citrate: Toward high catalytic activity for hydrogen evolution from ammonia borane hydrolysis. Int. J. Hydrog. Energy 2018, 43, 2718–2725. [Google Scholar] [CrossRef]
- Chandra, M.; Xu, Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. J. Power Sources 2007, 168, 135–142. [Google Scholar] [CrossRef]
- Tonbul, Y.; Akbayrak, S.; Özkar, S. Group 4 oxides supported Rhodium(0) catalysts in hydrolytic dehydrogenation of ammonia borane. Int. J. Hydrog. Energy 2019, 44, 14164–14174. [Google Scholar] [CrossRef]
- Rakap, M. PVP-stabilized Ru–Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. J. Alloy. Compd. 2015, 649, 1025–1030. [Google Scholar] [CrossRef]
- Akbayrak, S.; Özçifçi, Z.; Tabak, A. Noble metal nanoparticles supported on activated carbon: Highly recyclable catalysts in hydrogen generation from the hydrolysis of ammonia borane. J. Colloid Interface Sci. 2019, 546, 324–332. [Google Scholar] [CrossRef]
- Lin, H.; Xu, C.; Wang, Q.; Wu, J.; Wang, Y.; Zhang, Y.; Fan, G. Facile and eco-friendly synthesis of porous carbon nanosheets as ideal platform for stabilizing rhodium nanoparticles in efficient hydrolysis of ammonia borane. Int. J. Hydrog. Energy 2019, 44, 21527–21535. [Google Scholar] [CrossRef]
- Lü, R.; Hu, M.; Xu, C.; Wang, Y.; Zhang, Y.; Xu, B.; Gao, D.; Bi, J.; Fan, G. Hydrogen evolution from hydrolysis of ammonia borane catalyzed by Rh/g-C3N4 under mild conditions. Int. J. Hydrog. Energy 2018, 43, 7038–7045. [Google Scholar] [CrossRef]
- Yao, Q.; Lu, Z.-H.; Jia, Y.; Chen, X.; Liu, X. In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H2 generation from NH3BH3 hydrolysis. Int. J. Hydrog. Energy 2015, 40, 2207–2215. [Google Scholar] [CrossRef]
Catalysts | Temperature (°C) | Metal/AB (mol/mol) | TOF (Turnover Frequency) (min−1) | Ea (kJ mol−1) | Refs. |
---|---|---|---|---|---|
In situ Rh/C | 25 | 0.004 | 1246 | 40.9 | [15] |
Rh0/CeO2 | 25 | 0.0008 | 2010 | 42.6 | [18] |
Rh/PPC | 25 | 0.005 | 806 | 22.7 | [19] |
HCP-PPh3-Rh | 25 | 0.002 | 481 | 23.8 | [8] |
Rh/Carbon-SC | 25 | 0.003 | 336 | 37.1 | [51] |
Rh/graphene | 25 | 0.04 | 325 | 19.7 | [27] |
Rh/γ-Al2O3 | 25 | 0.018 | 128.2 | 21.0 | [52] |
Rh(0)@TiO2 | 25 | 0.00116 | 260 | 65.5 | [24] |
Rh0/nanoZrO2 | 25 | 0.02 | 198 | 48 | [53] |
Ru–Rh@PVP | 25 | 0.003 | 386 | 47.4 | [54] |
Rh/AC | 25 | 0.0009 | 180 | 39.9 | [55] |
Rh/PCNs | 25 | 0.004 | 513.2 | 46.5 | [56] |
Rh/g-C3N4 Rh0/nanoSiO2 | 25 | 0.003 0.0008 | 969 112 | 24.2 | [57] |
25 | - | [18] | |||
Rh0/nanoAl2O3 | 25 | 0.0008 | 112 | - | [18] |
Rh0/HfO2 | 25 | 0.0008 | 24 | - | [18] |
Rh(0)/CNT | 25 | 0.0025 | 706 | 32 | [58] |
Zeolite stabilized Rh(0) | 25 | 0.002 | 92 | 66.9 | [20] |
Laurate stabilized Rh(0) | 25 | 0.0025 | 200 | 43.6 | [21] |
Rh/nano-DA | 25 | 0.006 | 729.4 | 25.6 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Z.; Wu, J.; Fan, G. Facile Fabrication of Rhodium/Nanodiamond Hybrid as Advanced Catalyst toward Hydrogen Production from Ammonia–Borane. Catalysts 2020, 10, 1037. https://doi.org/10.3390/catal10091037
Wen Z, Wu J, Fan G. Facile Fabrication of Rhodium/Nanodiamond Hybrid as Advanced Catalyst toward Hydrogen Production from Ammonia–Borane. Catalysts. 2020; 10(9):1037. https://doi.org/10.3390/catal10091037
Chicago/Turabian StyleWen, Zhaoyu, Jie Wu, and Guangyin Fan. 2020. "Facile Fabrication of Rhodium/Nanodiamond Hybrid as Advanced Catalyst toward Hydrogen Production from Ammonia–Borane" Catalysts 10, no. 9: 1037. https://doi.org/10.3390/catal10091037
APA StyleWen, Z., Wu, J., & Fan, G. (2020). Facile Fabrication of Rhodium/Nanodiamond Hybrid as Advanced Catalyst toward Hydrogen Production from Ammonia–Borane. Catalysts, 10(9), 1037. https://doi.org/10.3390/catal10091037