Radical Carbonylative Synthesis of Heterocycles by Visible Light Photoredox Catalysis
Abstract
:1. Introduction
2. Carbon Monoxide (CO)-Mediated Radical Carbonylation
3. Aldehyde-Mediated Radical Carbonylation
4. Carboxylic Acids and Their Derivative-Mediated Radical Carbonylation
5. Miscellaneous Radical Carbonylation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Humphrey, J.M.; Chamberlin, A.R. Chemical Synthesis of Natural Product Peptides: Coupling Methods for the Incorporation of Noncoded Amino Acids into Peptides. Chem. Rev. 1997, 97, 2243–2266. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Ding, G.; Xie, L.; Cao, X.; Liu, J.; Lei, X.; Ma, J. Conjugated Carbonyl Compounds as High-Performance Cathode Materials for Rechargeable Batteries. Chem. Mater. 2019, 31, 8582–8612. [Google Scholar] [CrossRef]
- Mao, B.; Fañanás-Mastral, M.; Feringa, B.L. Catalytic Asymmetric Synthesis of Butenolides and Butyrolactones. Chem. Rev. 2017, 117, 10502–10566. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.R.; Hii, K.K. Transition Metal Catalyzed Enantioselective A-Heterofunctionalization of Carbonyl Compounds. Chem. Rev. 2011, 111, 1637–1656. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Kim, D.Y. Transition Metal-free Phosphorylation of Vinyl Azides: A Convenient Synthesis of Β-Ketophosphine Oxides. Bull. Korean Chem. Soc. 2020, 41, 370–373. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, J.; Li, M.B.; Bäckvall, J.E. Palladium-catalyzed Oxidative Dehydrogenative Carbonylation Reactions Using Carbon Monoxide and Mechanistic Overviews. Chem. Soc. Rev. 2020, 49, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Neumann, H.; Beller, M. Synthesis of α,β-unsaturated Carbonyl Compounds by Carbonylation Reactions. Chem. Soc. Rev. 2020, 49, 3187–3210. [Google Scholar] [CrossRef]
- Ryu, I. Radical Carboxylations of Iodoalkanes and Saturated Alcohols Using Carbon Monoxide. Chem. Soc. Rev. 2001, 30, 16–25. [Google Scholar] [CrossRef]
- Ryu, I. New Approaches in Radical Carbonylation Chemistry: Fluorous Applications and Designed Tandem Processes by Species-Hybridization with Anions and Transition Metal Species. Chem. Record 2002, 2, 249–258. [Google Scholar] [CrossRef]
- Sumino, S.; Fusano, A.; Fukuyama, T.; Ryu, I. Carbonylation Reactions of Alkyl Iodides through the Interplay of Carbon Radicals and Pd Catalysts. Acc. Chem. Res. 2014, 47, 1563–1574. [Google Scholar] [CrossRef]
- Peng, J.B.; Wu, F.P.; Wu, X.F. First-Row Transition-Metal-Catalyzed Carbonylative Transformations of Carbon Electrophiles. Chem. Rev. 2018, 119, 2090–2127. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.F.; Fang, X.; Wu, L.; Jackstell, R.; Neumann, H.; Beller, M. Transition-Metal-Catalyzed Carbonylation Reactions of Olefins and Alkynes: A Personal Account. Acc. Chem. Res. 2014, 47, 1041–1053. [Google Scholar] [CrossRef] [PubMed]
- Kunin, A.J.; Eisenberg, R. Photochemical Carbonylation of Benzene by Iridium(I) and Rhodium(I) Square-Planar Complexes. Organometallics 1988, 7, 2124–2129. [Google Scholar] [CrossRef]
- Ferguson, R.R.; Crabtree, R.H. Mercury-Photosensitized Sulfination, Hydros ulfination, and Carbonylation of Hydrocarbons: Alkane and Alkene Conversion to Sulfonic Acids, Ketones, and Aldehydes. J. Org. Chem. 1991, 56, 5503–5510. [Google Scholar] [CrossRef]
- Sakakura, T.; Sodeyama, T.; Sasaki, K.; Wada, K.; Tanaka, M. Carbonylation of Hydrocarbons via C-H Activation Catalyzed by RhCl(CO)(PMe3)2 under Irradiation. J. Am. Chem. Soc. 1990, 112, 7221–7229. [Google Scholar] [CrossRef]
- Jaynes, B.S.; Hill, C.L. Radical Carbonylation of Alkanes via Polyoxotungstate Photocatalysis. J. Am. Chem. Soc. 1995, 117, 4704–4705. [Google Scholar] [CrossRef]
- Pitzer, L.; Sandfort, F.; Strieth-Kalthoff, F.; Glorius, F. Carbonyl–Olefin Cross-Metathesis Through a Visible-Light-Induced 1,3-Diol Formation and Fragmentation Sequence. Angew. Chem. Int. Ed. 2018, 57, 16219–16223. [Google Scholar] [CrossRef]
- Yu, X.Y.; Zhao, Q.Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts. Acc. Chem. Res. 2020, 53, 1066–1083. [Google Scholar] [CrossRef]
- Festa, A.A.; Voskressensky, L.G.; Van der Eycken, E.V. Visible Light-mediated Chemistry of Indoles and Related Heterocycles. Chem. Soc. Rev. 2019, 48, 4401–4423. [Google Scholar] [CrossRef]
- Silvi, M.; Melchiorre, P. Enhancing the Potential of Enantioselective Organocatalysis with Light. Nature 2018, 554, 41–49. [Google Scholar] [CrossRef]
- Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Distal Radical Migration Strategy: An Emerging Synthetic Means. Chem. Soc. Rev. 2018, 47, 654–667. [Google Scholar] [CrossRef]
- Kärkäs, M.D.; Porco, J.A.; Stephenson, C.R.J. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. Chem. Rev. 2016, 116, 9683–9747. [Google Scholar] [CrossRef] [PubMed]
- Skubi, K.L.; Blum, T.R.; Yoon, T.P. Dual Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035–10074. [Google Scholar] [CrossRef]
- Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322–5363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, M.C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Photocatalytic Decarboxylative Alkylations Mediated by Triphenylphosphine and Sodium Iodide. Science 2019, 363, 1429–1434. [Google Scholar] [CrossRef] [PubMed]
- Strieth-Kalthoff, F.; James, M.J.; Teders, M.; Pitzer, L.; Glorius, F. Energy Transfer Catalysis Mediated by Visible Light: Principles, Applications, Directions. Chem. Soc. Rev. 2018, 47, 7190–7202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A.K.; Lei, A. Recent Advances in Radical C–H Activation/Radical Cross-Coupling. Chem. Rev. 2017, 117, 9016–9085. [Google Scholar] [CrossRef] [PubMed]
- Qiu, G.; Lai, L.; Cheng, J.; Wu, J. Recent Advances in the Sulfonylation of Alkenes with the Insertion of Sulfur Dioxide via Radical Reactions. Chem. Commun. 2018, 54, 10405–10414. [Google Scholar] [CrossRef]
- Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Visible Light Photoredox-controlled Reactions of N-radicals and Radical Ions. Chem. Soc. Rev. 2016, 45, 2044–2056. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond. Acc. Chem. Res. 2016, 49, 1911–1923. [Google Scholar] [CrossRef]
- Banerjee, A.; Lei, Z.; Ngai, M.Y. Acyl Radical Chemistry via Visible-Light Photoredox Catalysis. Synthesis 2018, 51, 303–333. [Google Scholar] [PubMed]
- Zhao, S.; Mankad, N.P. Metal-catalysed Radical Carbonylation Reactions. Catal. Sci. Technol. 2019, 9, 3603–3613. [Google Scholar] [CrossRef]
- Matsubara, H.; Kawamoto, T.; Fukuyama, T.; Ryu, I. Applications of Radical Carbonylation and Amine Addition Chemistry: 1,4-Hydrogen Transfer of 1-Hydroxylallyl Radicals. Acc. Chem. Res. 2018, 51, 2023–2035. [Google Scholar] [CrossRef]
- Peng, J.B.; Geng, H.Q.; Wu, X.F. The Chemistry of CO: Carbonylation. Chem 2019, 5, 526–552. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Shi, R.; Ding, A.; Lu, L.; Chen, B.; Lei, A. Transition-Metal-Free Alkoxycarbonylation of Aryl Halides. Angew. Chem. Int. Ed. 2012, 51, 12542–12545. [Google Scholar] [CrossRef]
- Guo, W.; Lu, L.-Q.; Wang, Y.; Wang, Y.N.; Chen, J.-R.; Xiao, W.-J. Metal-Free, Room-Temperature, Radical Alkoxycarbonylation of Aryldiazonium Salts Through Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2014, 54, 2265–2269. [Google Scholar] [CrossRef] [PubMed]
- Majek, M.; Jacobi von Wangelin, A. Metal-Free Carbonylations by Photoredox Catalysis. Angew. Chem. Int. Ed. 2014, 54, 2270–2274. [Google Scholar] [CrossRef]
- Gu, L.; Jin, C.; Liu, J. Metal-free, Visible-light-mediated Transformation of Aryl Diazonium Salts and (hetero)arenes: An Efficient Route to Aryl Ketones. Green Chem. 2015, 17, 3733–3736. [Google Scholar] [CrossRef]
- Zhang, H.T.; Gu, L.J.; Huang, X.Z.; Wang, R.; Jin, C.; Li, G.P. Synthesis of Indol-3-yl Aryl Ketones Through Visible-light-mediated Carbonylation. Chin. Chem. Lett. 2016, 27, 256–260. [Google Scholar] [CrossRef]
- Li, X.; Liang, D.; Huang, W.; Zhou, H.; Li, Z.; Wang, B.; Ma, Y.; Wang, H. Visible Light-induced Carbonylation of Indoles with Arylsulfonyl Chlorides and CO. Tetrahedron 2016, 72, 8442–8448. [Google Scholar] [CrossRef]
- Micic, N.; Polyzos, A. Radical Carbonylation Mediated by Continuous-Flow Visible-Light Photocatalysis: Access to 2,3-Dihydrobenzofurans. Org. Lett. 2018, 20, 4663–4666. [Google Scholar] [CrossRef]
- Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Decarboxylative Alkynylation and Carbonylative Alkynylation of Carboxylic Acids Enabled by Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2015, 54, 11196–11199. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhang, M.; Xiong, W.; Lu, L.-Q.; Xiao, W.-J. Deaminative (Carbonylative) Alkyl-Heck-type Reactions Enabled by Photocatalytic C−N Bond Activation. Angew. Chem. Int. Ed. 2019, 58, 2402–2406. [Google Scholar] [CrossRef] [PubMed]
- Basch, C.H.; Liao, J.; Xu, J.; Piane, J.J.; Watson, M.P. Harnessing Alkyl Amines as Electrophiles for Nickel-Catalyzed Cross Couplings via C–N Bond Activation. J. Am. Chem. Soc. 2017, 139, 5313–5316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, H.; Zhu, C.; Shen, L.; Geng, Q.; Hock, K.J.; Yuan, T.; Cavallo, L.; Rueping, M. Nickel-catalyzed C–N Bond Activation: Activated Primary Amines as Alkylating Reagents in Reductive Cross-coupling. Chem. Sci. 2019, 10, 4430–4435. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; He, L.; Noble, A.; Aggarwal, V.K. Photoinduced Deaminative Borylation of Alkylamines. J. Am. Chem. Soc. 2018, 140, 10700–10704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, B.; Cheng, Y.; Chen, L.Y.; Chen, J.-R.; Xiao, W.-J. Photoinduced Copper-Catalyzed Radical Aminocarbonylation of Cycloketone Oxime Esters. ACS Catal. 2019, 9, 8159–8164. [Google Scholar] [CrossRef]
- Torres, G.M.; Liu, Y.; Arndtsen, B.A. A Dual Light-driven Palladium Catalyst: Breaking the Barriers in Carbonylation Reactions. Science 2020, 368, 318–323. [Google Scholar] [CrossRef]
- Cartier, A.; Levernier, E.; Dhimane, A.; Fukuyama, T.; Ollivier, C.; Ryu, I.; Fensterbank, L. Synthesis of Aliphatic Amides Through a Photoredox Catalyzed Radical Carbonylation Involving Organosilicates as Alkyl Radical Precursors. Adv. Synth. Catal. 2020, 362, 2254–2259. [Google Scholar] [CrossRef]
- Liu, K.; Zou, M.; Lei, A. Aerobic Oxidative Carbonylation of Enamides by Merging Palladium with Photoredox Catalysis. J. Org. Chem. 2016, 81, 7088–7092. [Google Scholar] [CrossRef]
- Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chemistry of Acyl Radicals. Chem. Rev. 1999, 99, 1991–2070. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Qing, Z.; Liu, S.; Liu, W.; Xie, H.; Zeng, J. Regiospecific Minisci Acylation of Phenanthridine via Thermolysis or Photolysis. Tetrahedron Lett. 2014, 55, 6647–6651. [Google Scholar] [CrossRef]
- Capaldo, L.; Ravelli, D. Hydrogen Atom Transfer (HAT): A Versatile Strategy for Substrate Activation in Photocatalyzed Organic Synthesis. Eur. J. Org. Chem. 2017, 2017, 2056–2071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wang, D.Z. Visible-Light-Promoted Photoredox Syntheses of α, β-Epoxy Ketones from Styrenes and Benzaldehydes Under Alkaline Conditions. Org. Lett. 2015, 17, 5260–5263. [Google Scholar] [CrossRef]
- de Souza, G.F.P.; Bonacin, J.A.; Salles, A.G., Jr. Visible-Light-Driven Epoxyacylation and Hydroacylation of Olefins Using Methylene Blue/Persulfate System in Water. J. Org. Chem. 2018, 83, 8331–8340. [Google Scholar] [CrossRef]
- Voutyritsa, E.; Kokotos, C.G. Green Metal-Free Photochemical Hydroacylation of Unactivated Olefins. Angew. Chem. Int. Ed. 2020, 59, 1735–1741. [Google Scholar] [CrossRef]
- Zhao, X.; Li, B.; Xia, W. Visible-Light-Promoted Photocatalyst-Free Hydroacylation and Diacylation of Alkenes Tuned by NiCl2·DME. Org. Lett. 2020, 22, 1056–1061. [Google Scholar] [CrossRef]
- Goti, G.; Bieszczad, B.; Vega-Peñaloza, A.; Melchiorre, P. Stereocontrolled Synthesis of 1,4-Dicarbonyl Compounds by Photochemical Organocatalytic Acyl Radical Addition to Enals. Angew. Chem. Int. Ed. 2019, 58, 1213–1217. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Kim, J.; Hong, S. Visible Light-Promoted Synthesis of Spiroepoxy Chromanone Derivatives via a Tandem Oxidation/Radical Cyclization/Epoxidation Process. Adv. Synth. Catal. 2017, 359, 3945–3949. [Google Scholar] [CrossRef]
- Kawaai, K.; Yamaguchi, T.; Yamaguchi, E.; Endo, S.; Tada, N.; Ikari, A.; Itoh, A. Photoinduced Generation of Acyl Radicals from Simple Aldehydes, Access to 3-Acyl-4-arylcoumarin Derivatives, and Evaluation of Their Antiandrogenic Activities. J. Org. Chem. 2018, 83, 1988–1996. [Google Scholar] [CrossRef]
- Lux, M.; Klussmann, M. Additions of Aldehyde-Derived Radicals and Nucleophilic N-Alkylindoles to Styrenes by Photoredox Catalysis. Org. Lett. 2020, 22, 3697–3701. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ji, P.; Dong, Y.; Wei, Y.; Wang, W. Deuteration of Formyl Groups via a Catalytic Radical H/D Exchange Approach. ACS Catal. 2020, 10, 2226–2230. [Google Scholar] [CrossRef]
- Ackermann, L. Carboxylate-Assisted Transition-Metal-Catalyzed C−H Bond Functionalizations: Mechanism and Scope. Chem. Rev. 2011, 111, 1315–1345. [Google Scholar] [CrossRef] [PubMed]
- Gooßen, L.; Rodríguez, N.; Gooßen, K. Carboxylic Acids as Substrates in Homogeneous Catalysis. Angew. Chem. Int. Ed. 2008, 47, 3100–3120. [Google Scholar] [CrossRef]
- Font, M.; Quibell, J.M.; Perry, G.J.P.; Larrosa, I. The Use of Carboxylic Acids as Traceless Directing Groups for Regioselective C–H Bond Functionalisation. Chem. Commun. 2017, 53, 5584–5597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.-Q.; Liu, Z.-K.; Hou, Y.-X.; Gao, Y. Single Electron Activation of Aryl Carboxylic Acids. iScience 2020, 23, 101266. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, J.; Zhu, C. A General Deoxygenation Approach for Synthesis of Ketones from Aromatic Carboxylic Acids and Alkenes. Nat. Commun. 2018, 9, 3517. [Google Scholar] [CrossRef]
- Stache, E.E.; Ertel, A.B.; Rovis, T.; Doyle, A.G. Generation of Phosphoranyl Radicals via Photoredox Catalysis Enables Voltage–Independent Activation of Strong C–O Bonds. ACS Catal. 2018, 8, 11134–11139. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, X.A.; Zhu, C.; Xie, J. Deoxygenative Deuteration of Carboxylic Acids with D2O. Angew. Chem. Int. Ed. 2018, 58, 312–316. [Google Scholar] [CrossRef]
- Ruzi, R.; Ma, J.; Yuan, X.; Wang, W.; Wang, S.; Zhang, M.; Dai, J.; Xie, J.; Zhu, C. Deoxygenative Arylation of Carboxylic Acids by Aryl Migration. Chem. Eur. J. 2019, 25, 12724–12729. [Google Scholar] [CrossRef]
- Jiang, H.; Mao, G.; Wu, H.; An, Q.; Zuo, M.; Guo, W.; Xu, C.; Sun, Z.; Chu, W. Synthesis of Dibenzocycloketones by Acyl Radical Cyclization from Aromatic Carboxylic Acids Using Methylene Blue as a Photocatalyst. Green Chem. 2019, 21, 5368–5373. [Google Scholar] [CrossRef]
- Martinez Alvarado, J.I.; Ertel, A.B.; Stegner, A.; Stache, E.E.; Doyle, A.G. Direct Use of Carboxylic Acids in the Photocatalytic Hydroacylation of Styrenes To Generate Dialkyl Ketones. Org. Lett. 2019, 21, 9940–9944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.Q.; Wang, R.; Song, H.; Liu, Y.; Wang, Q. Visible-Light-Induced Deoxygenation/Defluorination Protocol for Synthesis of γ,γ-Difluoroallylic Ketones. Org. Lett. 2020, 22, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Bergonzini, G.; Cassani, C.; Wallentin, C.J. Acyl Radicals from Aromatic Carboxylic Acids by Means of Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2015, 54, 14066–14069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersson, F.; Bergonzini, G.; Cassani, C.; Wallentin, C.J. Redox-Neutral Dual Functionalization of Electron-Deficient Alkenes. Chem. Eur. J. 2017, 23, 7444–7447. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ruzi, R.; Xi, J.; Li, N.; Wu, Z.; Li, W.; Yu, S.; Zhu, C. Photoredox-Catalyzed Hydroacylation of Olefins Employing Carboxylic Acids and Hydrosilanes. Org. Lett. 2017, 19, 3430–3433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, N.; Tao, X.; Ruzi, R.; Yu, S.; Zhu, C. Selective Reduction of Carboxylic Acids to Aldehydes with Hydrosilane via Photoredox Catalysis. Chem. Commun. 2017, 53, 10228–10231. [Google Scholar] [CrossRef] [PubMed]
- Ruzi, R.; Zhang, M.; Ablajan, K.; Zhu, C. Photoredox-Catalyzed Deoxygenative Intramolecular Acylation of Biarylcarboxylic Acids: Access to Fluorenones. J. Org. Chem. 2017, 82, 12834–12839. [Google Scholar] [CrossRef]
- Bergonzini, G.; Cassani, C.; Lorimer-Olsson, H.; Hörberg, J.; Wallentin, C.J. Visible-Light-Mediated Photocatalytic Difunctionalization of Olefins by Radical Acylarylation and Tandem Acylation/Semipinacol Rearrangement. Chem. Eur. J. 2016, 22, 3292–3295. [Google Scholar] [CrossRef]
- Ociepa, M.; Baka, O.; Narodowiec, J.; Gryko, D. Light-Driven Vitamin B12-Catalysed Generation of Acyl Radicals from 2-S-Pyridyl Thioesters. Adv. Synth. Catal. 2017, 359, 3560–3565. [Google Scholar] [CrossRef]
- Norman, A.R.; Yousif, M.N.; McErlean, C.S.P. Photoredox-catalyzed Indirect Acyl Radical Generation from Thioesters. Org. Chem. Front. 2018, 5, 3267–3298. [Google Scholar] [CrossRef]
- Xu, S.M.; Chen, J.Q.; Liu, D.; Bao, Y.; Liang, Y.M.; Xu, P.F. Aroyl Chlorides as Novel Acyl Radical Precursors via Visible-light Photoredox Catalysis. Org. Chem. Front. 2017, 4, 1331–1335. [Google Scholar] [CrossRef]
- Li, C.G.; Xu, G.Q.; Xu, P.F. Synthesis of Fused Pyran Derivatives via Visible-Light-Induced Cascade Cyclization of 1,7-Enynes with Acyl Chlorides. Org. Lett. 2017, 19, 512–515. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.S.; Xu, G.Q.; Liang, H.; Wang, Z.Y.; Xu, P.F. Aroylchlorination of 1,6-Dienes via a Photoredox Catalytic Atom-Transfer Radical Cyclization Process. Org. Lett. 2019, 21, 8615–8619. [Google Scholar] [CrossRef] [PubMed]
- Patil, D.V.; Kim, H.Y.; Oh, K. Visible Light-Promoted Friedel–Crafts-Type Chloroacylation of Alkenes to Β-Chloroketones. Org. Lett. 2020, 22, 3018–3022. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.L.; Zhou, C.S.; Xiong, B.Q.; Zhang, P.L.; Yang, C.A.; Tang, K.W. Visible-Light-Mediated Ipso-Carboacylation of Alkynes: Synthesis of 3-Acylspiro[4,5]trienones from N-(p-Methoxyaryl)propiolamides and Acyl Chlorides. J. Org. Chem. 2018, 83, 2210–2218. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Q.L.; Zhou, C.S.; Xiong, B.Q.; Zhang, P.L.; Kang, S.J.; Yang, C.A.; Tang, K.W. Visible-light-mediated Cascade Difunctionalization/cyclization of Alkynoates with Acyl Chlorides for Synthesis of 3-acylcoumarins. Tetrahedron Lett. 2018, 59, 2038–2041. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Wang, Q.L.; Chen, P.; Xie, J.; Xiong, B.Q.; Zhang, P.L.; Tang, K.W. Visible Light-Catalyzed Cascade Radical Cyclization of N-Propargylindoles with Acyl Chlorides for the Synthesis of 2-Acyl-9H-pyrrolo[1,2-a]indoles. J. Org. Chem. 2020, 85, 2385–2394. [Google Scholar] [CrossRef]
- He, X.; Cai, B.; Yang, Q.; Wang, L.; Xuan, J. Visible-Light-Promoted Cascade Radical Cyclization: Synthesis of 1,4-Diketones Containing Chroman-4-One Skeletons. Chem. Asian J. 2019, 14, 3269–3273. [Google Scholar] [CrossRef]
- Wang, G.Z.; Shang, R.; Cheng, W.M.; Fu, Y. Decarboxylative 1,4-Addition of A-Oxocarboxylic Acids with Michael Acceptors Enabled by Photoredox Catalysis. Org. Lett. 2015, 17, 4830–4833. [Google Scholar] [CrossRef]
- Zhao, J.J.; Zhang, H.H.; Shen, X.; Yu, S. Enantioselective Radical Hydroacylation of Enals with A-Ketoacids Enabled by Photoredox/Amine Cocatalysis. Org. Lett. 2019, 21, 913–916. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Z.; Wu, S.; Chen, Y. Acyl Radical Smiles Rearrangement to Construct Hydroxybenzophenones by Photoredox Catalysis. Org. Lett. 2019, 21, 2077–2080. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A. Visible-Light-Mediated Decarboxylation/Oxidative Amidation of A-Keto Acids with Amines Under Mild Reaction Conditions Using O2. Angew. Chem. Int. Ed. 2013, 53, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qiao, J.; Liu, X.; Song, H.; Sun, Z.; Chu, W. Visible-Light-Induced Decarboxylation Coupling/Intramolecular Cyclization: A One-Pot Synthesis for 4-Aryl-2-quinolinone Derivatives. J. Org. Chem. 2018, 83, 1422–1430. [Google Scholar] [CrossRef]
- Ji, W.; Tan, H.; Wang, M.; Li, P.; Wang, L. Photocatalyst-free Hypervalent Iodine Reagent Catalyzed Decarboxylative Acylarylation of Acrylamides with A-oxocarboxylic Acids Driven by Visible-light Irradiation. Chem. Commun. 2016, 52, 1462–1465. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, R.; Xue, W.; Liu, X.; Zhao, Y.; Wang, K.H.; Huang, D.; Huo, C.; Hu, Y. Visible-light-promoted Acyl Radical Cascade Reaction for Accessing Acylated Isoquinoline-1,3(2H,4H)-dione Derivatives. Org. Biomol. Chem. 2020, 18, 1940–1948. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, P.; Zhang, R.; Li, X.; Yao, T. Visible-Light-Induced Decarboxylative Cyclization of 2-Alkenylarylisocyanides with A-Oxocarboxylic Acids: Access to 2-Acylindoles. J. Org. Chem. 2020. [Google Scholar] [CrossRef]
- Manna, S.; Prabhu, K.R. Visible-Light-Mediated Direct Decarboxylative Acylation of Electron-Deficient Heteroarenes Using A-Ketoacids. J. Org. Chem. 2019, 84, 5067–5077. [Google Scholar] [CrossRef]
- Petersen, W.F.; Taylor, R.J.K.; Donald, J.R. Photoredox-catalyzed Procedure for Carbamoyl Radical Generation: 3,4-dihydroquinolin-2-one and Quinolin-2-one Synthesis. Org. Biomol. Chem. 2017, 15, 5831–5845. [Google Scholar] [CrossRef] [Green Version]
- Bai, Q.F.; Jin, C.; He, J.Y.; Feng, G. Carbamoyl Radicals via Photoredox Decarboxylation of Oxamic Acids in Aqueous Media: Access to 3,4-Dihydroquinolin-2(1H)-ones. Org. Lett. 2018, 20, 2172–2175. [Google Scholar] [CrossRef]
- Petersen, W.F.; Taylor, R.J.K.; Donald, J.R. Photoredox-Catalyzed Reductive Carbamoyl Radical Generation: A Redox-Neutral Intermolecular Addition–Cyclization Approach to Functionalized 3,4-Dihydroquinolin-2-ones. Org. Lett. 2017, 19, 874–877. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Lei, T.; Chen, B.; Tung, C.H.; Wu, L.Z. Photocatalytic C–C Bond Activation of Oxime Ester for Acyl Radical Generation and Application. Org. Lett. 2019, 21, 4153–4158. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.-Q.; Liu, Z.-K.; Xiao, W.-J. Radical Carbonylative Synthesis of Heterocycles by Visible Light Photoredox Catalysis. Catalysts 2020, 10, 1054. https://doi.org/10.3390/catal10091054
Hu X-Q, Liu Z-K, Xiao W-J. Radical Carbonylative Synthesis of Heterocycles by Visible Light Photoredox Catalysis. Catalysts. 2020; 10(9):1054. https://doi.org/10.3390/catal10091054
Chicago/Turabian StyleHu, Xiao-Qiang, Zi-Kui Liu, and Wen-Jing Xiao. 2020. "Radical Carbonylative Synthesis of Heterocycles by Visible Light Photoredox Catalysis" Catalysts 10, no. 9: 1054. https://doi.org/10.3390/catal10091054
APA StyleHu, X. -Q., Liu, Z. -K., & Xiao, W. -J. (2020). Radical Carbonylative Synthesis of Heterocycles by Visible Light Photoredox Catalysis. Catalysts, 10(9), 1054. https://doi.org/10.3390/catal10091054