Electrooxidation of Urea in Alkaline Solution Using Nickel Hydroxide Activated Carbon Paper Electrodeposited from DMSO Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalysts Characterization
2.2. Morphological Characterization of Amorphous Ni(OH)2
2.3. Surface Features of Ni(OH)2/CP
2.4. Electrochemical Characterization of the Ni(OH)2 Catalyst
3. Experimental
3.1. Materials
3.2. Synthesis of Ni(OH)2/CP Catalysts
3.3. Materials Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.; Monllor−Satoca, D.; Choi, W. Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components. Energy Environ. Sci. 2012, 5, 7647–7656. [Google Scholar] [CrossRef] [Green Version]
- Rollinson, A.N.; Jones, J.; Dupont, V.; Twigg, M.V. Urea as a hydrogen carrier: A perspective on its potential for safe, sustainable and long-term energy supply. Energy Environ. Sci. 2011, 4, 1216–1224. [Google Scholar] [CrossRef] [Green Version]
- Ji, R.; Chan, D.; Jow, J.; Wu, M. Formation of open-ended nickel hydroxide nanotubes on three-dimensional nickel framework for enhanced urea electrolysis. Electrochem. Commun. 2013, 29, 21–24. [Google Scholar] [CrossRef]
- Boggs, B.K.; King, R.L.; Botte, G.G. Urea electrolysis: direct hydrogen production from urine. Chem. Commun. 2009, 4859–4861. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Wang, D.; Botte, G.G. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation. Electrochim. Acta 2012, 61, 25–30. [Google Scholar] [CrossRef]
- Terblanche, A.P.S. Health hazards of nitrate in drinking water. Water S.A. 1991, 17, 77–82. [Google Scholar]
- Simka, W.; Piotrowski, J.; Robak, A.; Nawrat, G. Electrochemical treatment of aqueous solutions containing urea. J. Appl. Electrochem. 2009, 39, 1137–1143. [Google Scholar] [CrossRef]
- Patzer, J.F., II; Wolfson, S.K., Jr.; Yao, S.J. Platinized-titanium electrodes for urea oxidation Part II. Concentric spiral coil geometry. J. Mol. Catal. 1991, 70, 231–242. [Google Scholar] [CrossRef]
- Wright, J.C.; Michaels, A.S.; Appleby, A.J. Electrooxidation of urea at the ruthenium titanium oxide electrode. AIChE J. 1986, 32, 1450–1458. [Google Scholar] [CrossRef]
- Lan, R.; Tao, S.; Irvine, J.T.S. A direct urea fuel cell–power from fertiliser and waste. Energy Environ. Sci. 2010, 3, 438. [Google Scholar] [CrossRef] [Green Version]
- Barakat, N.A.M.; El−Newehy, M.H.; Yasin, A.S.; Ghouri, Z.K.; Al Deyab, S.S. Ni&Mn nanoparticles-decorated carbon nanofibers as effective electrocatalyst for urea oxidation. Appl. Catal. A 2016, 510, 180–188. [Google Scholar]
- Tong, Y.; Chen, P.; Zhang, M.; Zhou, T.; Zhang, L.; Chu, W.; Wu, C.; Xie, Y. Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. ACS Catal. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Basumatary, P.; Konwar, D.; Yoon, Y.S. A novel NiCu/ZnO@MWCNT anode employed in urea fuel cell to attain superior performances. Electrochim. Acta 2018, 261, 78–85. [Google Scholar] [CrossRef]
- Gromyko, V.A.; Tsygankova, T.B.; Gaidadymov, V.B.; Vasil’ev, Y.B.; Bagotskii, V.S. Elektrooxidation von harnstoff an einer glatten platinelektrode 2. Mitt. Elektrokhimiya 1974, 10, 57. [Google Scholar]
- Horanyi, G.; Inzelt, G.; Rizmayer, E.M. Radiotracer study of the adsorption of urea on platinized platinum electrodes in the presence of different ions and organic compounds. J. Electroanal. Chem. Interfacial Electrochem. 1979, 98, 105. [Google Scholar] [CrossRef]
- Ling, T.R.; Lien, K.T.; Jow, J.J.; Lin, T.Y. Mesoporous Nickel Electrode for the Detection of Alcohol. Electroanalysis 2009, 21, 2213–2219. [Google Scholar] [CrossRef]
- Arunachalam, P.; Nagarani, S.; Prasad, S.; AlSalhi, M.S.; Al-Mayouf, A.M.; Moydeen, M.; Ganapathy, S. Facile coprecipitation synthesis of nickel doped copper oxide nanocomposite as electrocatalyst for methanol electrooxidation in alkaline solution. Mater. Res. Express 2018, 5, 015512. [Google Scholar] [CrossRef]
- Arunachalam, P.; Shaddad, M.N.; Alamoudi, A.S.; Ghanem, M.A.; Al-Mayouf, A.M. Microwave-assisted synthesis of Co3 (PO4)2 nanospheres for electrocatalytic oxidation of methanol in alkaline media. Catalysts 2017, 7, 119. [Google Scholar] [CrossRef]
- Al-Sharif, M.S.; Arunachalam, P.; Abiti, T.; Amer, M.S.; Al-Shalwi, M.; Ghanem, M.A. Mesoporous cobalt phosphate electrocatalyst prepared using liquid crystal template for methanol oxidation reaction in alkaline solution. Arabian J. Chem. 2020, 13, 2873–2882. [Google Scholar] [CrossRef]
- El−Shafei, A.A.J. Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium. Electroanal. Chem. 1999, 471, 89–95. [Google Scholar] [CrossRef]
- Yan, W.; Wang, D.; Botte, G.G. Template-assisted synthesis of Ni–Co bimetallic nanowires for urea electrocatalytic oxidation. J. Appl. Electrochem. 2015, 45, 1217–1222. [Google Scholar] [CrossRef]
- Yan, W.; Wang, D.; Diaz, L.A.; Botte, G.G. Nickel nanowires as effective catalysts for urea electro-oxidation. Electrochimica Acta 2014, 134, 266–271. [Google Scholar] [CrossRef]
- Chen, J.; Ci, S.; Wang, G.; Senthilkumar, N.; Zhang, M.; Xu, Q.; Wen, Z. Ni(OH)2 Nanosheet Electrocatalyst toward alkaline urea electrolysis for energy-saving acidic hydrogen production. ChemElectroChem 2019, 6, 5313–5320. [Google Scholar] [CrossRef]
- Abdel Hameed, R.M.; Medany, S.S. Influence of support material on the electrocatalytic activity of nickel oxide nanoparticles for urea electro-oxidation reaction. J. Colloid Interface Sci. 2018, 513, 536–548. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.H. Platinum-based nanostructured materials: synthesis, properties, and applications. Hindle Chem. Rev. 2010, 110, 3767–3804. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Ding, R. Recent progress with electrocatalysts for urea electrolysis in alkaline media for energy-saving hydrogen production. Catal. Sci. Technol. 2020, 10, 1567–1581. [Google Scholar] [CrossRef]
- Wang, G.; Wen, Z. Self-supported bimetallic Ni–Co compound electrodes for urea-and neutralization energy-assisted electrolytic hydrogen production. Nanoscale 2018, 10, 21087–21095. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Y.; Xue, Y.; Miao, B.; Li, S.; Jiang, Y.; Liu, X.; Chen, Y. Atomically thick Ni(OH)2 nanomeshes for urea electrooxidation. Nanoscale 2019, 11, 1058–1064. [Google Scholar] [CrossRef]
- Wei, S.; Wang, X.; Wang, J.; Sun, X.; Cui, L.; Yang, W.; Zheng, Y.; Liu, J. CoS2 nanoneedle array on Ti mesh: a stable and efficient bifunctional electrocatalyst for urea-assisted electrolytic hydrogen production. Electrochim. Acta 2017, 246, 776–782. [Google Scholar] [CrossRef]
- Wang, D.; Yan, W.; Botte, G.G. Exfoliated nickel hydroxide nanosheets for urea electrolysis. Electrochem. Commun. 2011, 13, 1135–1138. [Google Scholar] [CrossRef]
- Singh, R.K.; Schechter, A. Electrochemical investigation of urea oxidation reaction on β Ni(OH)2 and Ni/Ni(OH)2. Electrochim. Acta 2018, 278, 405–411. [Google Scholar] [CrossRef]
- Kudo, S.; Goto, N.; Sperry, J.; Norinaga, K.; Hayashi, J.I. Production of levoglucosenone and dihydrolevoglucosenone by catalytic reforming of volatiles from cellulose pyrolysis using supported ionic liquid phase. ACS Sustain. Chem. Eng. 2017, 5, 1132–1140. [Google Scholar] [CrossRef]
- Babar, P.; Lokhande, A.; Karade, V.; Pawar, B.; Gang, G.M.; Pawar, S.; Kim, H.J. Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis. ACS Sustain. Chem. Eng. 2019, 7, 10035–10043. [Google Scholar] [CrossRef]
- Shen, F.; Jiang, W.; Qian, G.; Chen, W.; Zhang, H.; Luo, L.; Yin, S. Strongly coupled carbon encapsulated Ni-WO2 hybrids as efficient catalysts for water-to-hydrogen conversion via urea electro-oxidation. J. Power Sources 2020, 458, 228014. [Google Scholar] [CrossRef]
- Xiong, P.; Ao, X.; Chen, J.; Li, J.G.; Lv, L.; Li, Z.; Zondode, M.; Xue, X.; Lan, Y.; Wang, C. Nickel diselenide nanoflakes give superior urea electrocatalytic conversion. Electrochimica Acta 2019, 297, 833–841. [Google Scholar] [CrossRef]
- Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J.Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455. [Google Scholar] [CrossRef]
- Yafarova, L.V.; Chislova, I.V.; Zvereva, I.A.; Kryuchkova, T.A.; Kost, V.V.; Sheshko, T.F. Sol–gel synthesis and investigation of catalysts on the basis of perovskite-type oxides GdMO3 (M = Fe, Co). J. Sol−Gel Sci. Technol. 2019, 92, 264–272. [Google Scholar] [CrossRef]
- Wu, M.S.; Lin, G.W.; Yang, R.S. Hydrothermal growth of vertically-aligned ordered mesoporous nickel oxide nanosheets on three-dimensional nickel framework for electrocatalytic oxidation of urea in alkaline medium. J. Power Sources 2014, 272, 711–718. [Google Scholar] [CrossRef]
- Yang, P.; Yuan, X.; Hu, H.; Liu, Y.; Zheng, H.; Yang, D.; Li, Y. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater. 2018, 28, 1704774. [Google Scholar] [CrossRef]
- Premnath, K.; Arunachalam, P.; Amer, M.S.; Madhavan, J.; Al-Mayouf, A.M. Hydrothermally synthesized nickel molybdenum selenide composites as cost-effective and efficient trifunctional electrocatalysts for water splitting reactions. Int. J. Hydrogen Energy 2019, 44, 22796–22805. [Google Scholar] [CrossRef]
- Pang, H.; Wei, C.; Li, X.; Li, G.; Li, S.; Chen, J.; Zhang, J. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production. Sci. Rep. 2014, 4, 3577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Park, H.; Kim, D.K.; Choi, I.; Kim, S.K. Pulse-electrodeposited nickel phosphide for high-performance proton exchange membrane water electrolysis. J. Alloys Compd. 2019, 785, 296–304. [Google Scholar] [CrossRef]
- Shaddad, M.N.; Arunachalam, P.; Hezam, M.; Al-Mayouf, A.M. Cooperative Catalytic Behavior of SnO2 and NiWO4 over BiVO4 Photoanodes for Enhanced Photoelectrochemical Water Splitting Performance. Catalysts 2019, 9, 879. [Google Scholar] [CrossRef] [Green Version]
- Shaddad, M.N.; Arunachalam, P.; Alothman, A.A.; Beagan, A.M.; Alshalwi, M.N.; Al-Mayouf, A.M. Synergetic catalytic behavior of AgNi-OH-Pi nanostructures on Zr: BiVO4 photoanode for improved stability and photoelectrochemical water splitting performance. J. Catal. 2019, 371, 10–19. [Google Scholar] [CrossRef]
- Torabinejad, V.; Aliofkhazraei, M.; Assareh, S.; Allahyarzadeh, M.H.; Rouhaghdam, A.S. Electrodeposition of Ni-Fe alloys, composites, and nano coatings–A review. J. Alloys Compd. 2017, 691, 841–859. [Google Scholar] [CrossRef]
- Hong, B.; Jiang, C.; Wang, X. Texture of electroplated copper film under biaxial stress. Mater. Trans. 2006, 47, 2299–2301. [Google Scholar] [CrossRef]
- Song, Y.; Oh, J.; Park, K. Pt nanostructure electrodes pulse electrodeposited in PVP for electrochemical power sources. Nanotechnology 2008, 19, 355602. [Google Scholar] [CrossRef]
- Wang, D.; Yan, W.; Vijapur, S.H.; Botte, G.G. Enhanced electrocatalytic oxidation of urea based on nickel hydroxide nanoribbons. J. Power Sources 2012, 217, 498–502. [Google Scholar] [CrossRef]
- Ye, K.; Zhang, D.; Guo, F.; Cheng, K.; Wang, G.; Cao, D. Highly porous nickel@ carbon sponge as a novel type of three-dimensional anode with low cost for high catalytic performance of urea electro-oxidation in alkaline medium. J. Power Sources 2015, 283, 408–415. [Google Scholar] [CrossRef]
- Duan, T.; Chen, Y.; Wen, Q.; Duan, Y. Enhanced electrocatalytic activity of nano-TiN composited Ti/Sb–SnO2 electrode fabricated by pulse electrodeposition for methylene blue decolorization. RSC Adv. 2014, 4, 57463–57475. [Google Scholar] [CrossRef]
- Bourbos, E.; Karantonis, A.; Sygellou, L.; Paspaliaris, I.; Panias, D. Study of Nd Electrodeposition from the Aprotic Organic Solvent Dimethyl Sulfoxide. Metals 2018, 8, 803. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Xu, D.; Guo, G.; Gui, L. Preparation of Ag2Se and Ag2Se1−xTex nanowires by electrodeposition from DMSO baths. Electrochem. Commun. 2003, 5, 579–583. [Google Scholar] [CrossRef]
- Gan, Q.; Cheng, X.; Chen, J.; Wang, D.; Wang, B.; Tian, J.; Isimjan, T.T.; Yang, X. Temperature effect on crystallinity and chemical states of nickel hydroxide as alternative superior catalyst for urea electrooxidation. Electrochim. Acta 2019, 301, 47–54. [Google Scholar] [CrossRef]
- Bahramian, A.; Eyraud, M.; Vacandio, F.; Hornebecq, V.; Djenizian, T. Single-step electrodeposition of superhydrophobic black NiO thin films. J. Appl. Electrochem. 2020, 49, 621–629. [Google Scholar] [CrossRef]
- Gomez, H.; Riveros, G.; Ramirez, D.; Henriquez, R.; Schrebler, R.; Marotti, R.; Dalchiele, E. Growth and characterization of ZnO nanowire arrays electrodeposited into anodic alumina templates in DMSO solution. Solid State Electrochem. 2012, 16, 197–204. [Google Scholar] [CrossRef]
- Ding, H.; Feng, Y.; Liu, J. Preparation and properties of Ti/SnO2–Sb2O5 electrodes by electrodeposition. Mater. Lett. 2007, 61, 4920–4923. [Google Scholar] [CrossRef]
- Watanabe, T. NANO Plating, Microstructure Control Theory of Plated Film and Data Base of Plated Film Microstructure; Elsevier Ltd.: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Yin, A.J.; Li, J.; Jian, W.; Bennett, A.J.; Xu, J.M. Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl. Phys. Lett. 2001, 79, 1039–1041. [Google Scholar]
- Duan, Y.; Chen, Y.; Wen, Q.; Duan, T. Electrodeposition preparation of a cauliflower-like Sb–SnO2 electrode from DMSO solution for electrochemical dye decolorization. RSC Adv. 2016, 6, 48043–48048. [Google Scholar] [CrossRef]
- Arunachalam, P.; Ghanem, M.A.; Al-Mayouf, A.M.; Al-shalwi, M.; Abd-Elkader, O.H. Microwave assisted synthesis and characterization of Ni/NiO nanoparticles as electrocatalyst for methanol oxidation in alkaline solution. Mater. Res. Express 2017, 4, 025035. [Google Scholar] [CrossRef]
- Arunachalam, P.; Ghanem, M.A.; Al-Mayouf, A.M.; Al-shalwi, M. Enhanced electrocatalytic performance of mesoporous nickel-cobalt oxide electrode for methanol oxidation in alkaline solution. Mater. Lett. 2017, 196, 365–368. [Google Scholar]
- Ghanem, M.A.; Al-Mayouf, A.M.; Singh, J.P.; Abiti, T.; Marken, F. Mesoporous nickel/nickel hydroxide catalyst using liquid crystal template for ethanol oxidation in alkaline solution. J. Electrochem. Soc. 2015, 162, H453. [Google Scholar] [CrossRef]
- Su, Y.-Z.; Xiao, K.; Li, N.; Liu, Z.-Q.; Qiao, S.-Z. Amorphous Ni(OH)2@ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 13845–13853. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Xiao, K.; Xu, Q.Z.; Li, N.; Su, Y.Z.; Wang, H.J.; Chen, S. Fabrication of hierarchical flower-like super-structures consisting of porous NiCo2O4 nanosheets and their electrochemical and magnetic properties. RSC Adv. 2013, 4, 4372–4380. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Xu, Q.Z.; Wang, J.Y.; Li, N.; Guo, S.H.; Su, Y.Z.; Wang, H.J.; Zhang, J.H.; Chen, S. Facile hydrothermal synthesis of urchin-like NiCo2O4 spheres as efficient electrocatalysts for oxygen reduction reaction. Int. J. Hydrogen Energy 2013, 38, 6657–6662. [Google Scholar] [CrossRef]
- Rahim, M.A.; Hameed, R.A.; Khalil, M.W. Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J. Power Sources 2004, 134, 160–169. [Google Scholar] [CrossRef]
- Jafarian, M.; Babaee, M.; Gobal, F.; Mahjani, M.G. Electro-oxidation of alcohols on nickel dispersed in poly-o-aminophenol modified graphite electrode. J. Electroanal. Chem. 2011, 652, 8–12. [Google Scholar] [CrossRef]
- Hosseini, S.; Abbasi, A.; Uginet, L.O.; Haustraete, N.; Praserthdam, S.; Yonezawa, T.; Kheawhom, S. The influence of dimethyl sulfoxide as electrolyte additive on anodic dissolution of alkaline zinc-air flow battery. Sci. Rep. 2019, 9, 1–12. [Google Scholar]
- Vedharathinam, V.; Botte, G.G. Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2 catalyst in alkaline medium. Electrochim. Acta 2013, 108, 660–665. [Google Scholar]
- Danaee, I.; Jafarian, M.; Forouzandeh, F.; Gobal, F.; Mahjani, M.G. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int. J. Hydrogen Energy 2008, 33, 4367–4376. [Google Scholar]
- Li, B.; Ai, M.; Xu, Z. Mesoporous β-Ni(OH)2: synthesis and enhanced electrochemical performance. Chem. Commun. 2010, 46, 6267–6269. [Google Scholar]
- Yi, Q.; Huang, W.; Yu, W.; Li, L.; Liu, X. Hydrothermal Synthesis of Titanium-Supported Nickel Nanoflakes for Electrochemical Oxidation of Glucose. Electroanalysis 2008, 20, 2016–2022. [Google Scholar] [CrossRef]
- Ding, R.; Qi, L.; Jia, M.; Wang, H. Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale 2014, 6, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chang, J.; Xue, H.; Xing, W.; Feng, L. Catalytic Stability Study of a Pd-Ni2P/C Catalyst for Formic Acid Electrooxidation. ChemElectroChem 2017, 4, 1243–1249. [Google Scholar] [CrossRef]
- Xu, Q.; Qian, G.; Yin, S.; Yu, C.; Chen, W.; Yu, T.; Luo, L.; Xia, Y.; Tsiakaras, P. Design and Synthesis of Highly Performing Bifunctional Ni-NiO-MoNi Hybrid Catalysts for Enhanced Urea Oxidation and Hydrogen Evolution Reactions. ACS Sustain. Chem. Eng. 2020, 8, 7174–7181. [Google Scholar] [CrossRef]
- Qian, G.; Chen, J.; Luo, L.; Zhang, H.; Chen, W.; Gao, Z.; Yin, S.; Tsiakaras, P. Novel Bifunctional V2O3 Nanosheets Coupled with N-Doped-Carbon Encapsulated Ni Heterostructure for Enhanced Electrocatalytic Oxidation of Urea-Rich Wastewater. ACS Appl. Mater. Interfaces 2020, 12, 38061–380619. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Subramanian, P.; Schechter, A. Enhanced urea activity of oxidation on nickel-deposited tin dendrites. ChemElectroChem 2017, 4, 1037–1043. [Google Scholar] [CrossRef]
- Forslund, R.P.; Alexander, C.T.; Abakumov, A.M.; Johnston, K.P.; Stevenson, K.J. Enhanced electrocatalytic activities by substitutional tuning of nickel-based ruddlesden–popper catalysts for the oxidation of urea and small alcohols. ACS Catal. 2019, 9, 2664–2673. [Google Scholar]
- Ghanem, M.A.; Al−Mayouf, A.M.; Singh, J.P.; Arunachalam, P. Concurrent deposition and exfoliation of nickel hydroxide nanoflakes using liquid crystal template and their activity for urea electrooxidation in alkaline medium. Electrocatalysis 2017, 8, 16–26. [Google Scholar] [CrossRef]
- Sharel, P.E.; Liu, D.; Lazenby, R.A.; Sloan, J.; Vidotti, M.; Unwin, P.R.; Macpherson, J.V. Electrodeposition of nickel hydroxide nanoparticles on carbon nanotube electrodes: correlation of particle crystallography with electrocatalytic properties. J. Phys. Chem. C 2016, 120, 16059–16068. [Google Scholar]
Element, Atomic% | Carbon Paper (CP) | Ni, DW | Ni, DMSO |
---|---|---|---|
C K | 82.56 | 54.09 | 84.36 |
O K | 1.22 | 28.27 | 4.54 |
F K | 16.22 | 13.97 | 10.15 |
Ni K | - | 3.66 | 0.70 |
S K | - | - | 0.09 |
Anodic Materials | Specific Activity/Mass Activity mA/cm2 | Tafel Plot/mVdec−1 | Stability | Onset Potential, V | References |
---|---|---|---|---|---|
(Ni-WO2)@C/NF | 300 mA/cm2/- | 33 | 80 h | 1.30 vs. RHE | [24] |
Ni-NiO-Mo0.84Ni0.16/NF | 400 mA/cm2/- | 35.78 | 60 h | 1.33 vs. RHE | [75] |
Ni@C-V2O3/NF | 1200 mA/cm2/- | 41.22 | 50 h | 1.32 vs. RHE | [76] |
NiO/Gt electrocatalyst | ~30 mA/cm2/- | 116.08 | 0.5 h | 0.345 V vs. Ag/AgCl | [34] |
Ni-Deposited Sn Dendrites | 44 mA/cm2/- | - | ~1.0 h | 0.34 V vs. Ag/AgCl | [77] |
Ni(OH)2 nanomesh | -/800 mA/mg | 80 | 1.5 h | 1.38 V vs. RHE | [28] |
La0.5Sr1.5NiO4 + δ (LSN25) | -/1200 mA/mg | - | 1.0 h | 0.44 V vs. Hg/HgO | [53] |
Ni(OH)2 nanoflakes | -/1295 mA/mg | - | 1.0 h | 0.38 V vs. SCE | [78] |
Ni(OH)2-DMSO | 100 mA/cm2/1000 mA/mg | 28 | 5.0 h | 0.5 V vs. Ag/AgCl | This work |
Ni(OH)2-H2O | 56 mA/cm2 | 22 | 0.5 V vs. Ag/AgCl | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aladeemy, S.A.; Al-Mayouf, A.M.; Shaddad, M.N.; Amer, M.S.; Almutairi, N.K.; Ghanem, M.A.; Alotaibi, N.H.; Arunachalam, P. Electrooxidation of Urea in Alkaline Solution Using Nickel Hydroxide Activated Carbon Paper Electrodeposited from DMSO Solution. Catalysts 2021, 11, 102. https://doi.org/10.3390/catal11010102
Aladeemy SA, Al-Mayouf AM, Shaddad MN, Amer MS, Almutairi NK, Ghanem MA, Alotaibi NH, Arunachalam P. Electrooxidation of Urea in Alkaline Solution Using Nickel Hydroxide Activated Carbon Paper Electrodeposited from DMSO Solution. Catalysts. 2021; 11(1):102. https://doi.org/10.3390/catal11010102
Chicago/Turabian StyleAladeemy, Saba A., Abdullah M. Al-Mayouf, Maged N. Shaddad, Mabrook S. Amer, Nawier K. Almutairi, Mohamed A. Ghanem, Nouf H. Alotaibi, and Prabhakarn Arunachalam. 2021. "Electrooxidation of Urea in Alkaline Solution Using Nickel Hydroxide Activated Carbon Paper Electrodeposited from DMSO Solution" Catalysts 11, no. 1: 102. https://doi.org/10.3390/catal11010102
APA StyleAladeemy, S. A., Al-Mayouf, A. M., Shaddad, M. N., Amer, M. S., Almutairi, N. K., Ghanem, M. A., Alotaibi, N. H., & Arunachalam, P. (2021). Electrooxidation of Urea in Alkaline Solution Using Nickel Hydroxide Activated Carbon Paper Electrodeposited from DMSO Solution. Catalysts, 11(1), 102. https://doi.org/10.3390/catal11010102