ZIF-67 Derived MnO2 Doped Electrocatalyst for Oxygen Reduction Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Prepared Catalyst
2.2. Electrochemical Analyses
2.3. Electrochemical Evaluation of Prepared Catalsyts
3. Experimental
3.1. Characterization
3.2. Synthesis of ZIF-67
3.3. Synthesis of Mesoporous Carbon
3.4. Synthesis of MnO2-Doped Mesoporous Carbon
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pathak, S. Energy Crisis: A Review. Int. J. Eng. Res. Appl. 2014, 4, 845–851. [Google Scholar]
- Noor, T.; Ammad, M.; Zaman, N.; Iqbal, N.; Yaqoob, L.; Nasir, H. A highly efficient and stable copper BTC metal organic framework derived electrocatalyst for oxidation of methanol in DMFC application. Catal. Lett. 2019, 149, 3312–3327. [Google Scholar] [CrossRef]
- Shafiee, S.; Topal, E. When will fossil fuel reserves be diminished? Energy Policy 2009, 37, 181–189. [Google Scholar] [CrossRef]
- Qureshi, M.N. Energy Crisis in Pakistan: A Threat to National Security; ISSRA: Islamabad, Pakistan, 2009. [Google Scholar]
- Yaqoob, L.; Noor, T.; Iqbal, N.; Nasir, H.; Sohail, M.; Zaman, N.; Usman, M. Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: An efficient and robust electocatalyst for oxygen evaluation reaction (OER). Renew. Energy 2020. [Google Scholar] [CrossRef]
- Baker, B.S.; Ghezel-Ayagh, H.G. Fuel Cell System. U.S. Patents 4532192A, 30 July 1985. [Google Scholar]
- Wahab, A.; Iqbal, N.; Noor, T.; Ashraf, S.; Raza, M.A.; Ahmad, A.; Khan, U.A. Thermally reduced mesoporous manganese MOF@ reduced graphene oxide nanocomposite as bifunctional electrocatalyst for oxygen reduction and evolution. RSC Adv. 2020, 10, 27728–27742. [Google Scholar] [CrossRef]
- Ren, Y.; Chia, G.H.; Gao, Z. Metal–organic frameworks in fuel cell technologies. Nano Today 2013, 8, 577–597. [Google Scholar] [CrossRef]
- Strahl, S.; Costa-Castelló, R. Temperature control of open-cathode PEM fuel cells. IFAC-PapersOnLine 2017, 50, 11088–11093. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, S.A.M.; Iqbal, N.; Haider, M.D.; Noor, T.; Anwar, R.; Hanif, S. Synthesis and Characterization of Cu-MOF Derived Cu@ AC Electrocatalyst for Oxygen Reduction Reaction in PEMFC. Catal. Lett. 2019, 150, 1397–1407. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, F.; Xiang, Z.; Shen, Z.; Yun, J.; Cao, D. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 442–450. [Google Scholar] [CrossRef]
- Sarwar, E.; Noor, T.; Iqbal, N.; Mehmood, Y.; Ahmed, S.; Mehek, R. Effect of Co–Ni Ratio in Graphene Based Bimetallic Electro–catalyst for Methanol Oxidation. Fuel cells 2018, 18, 189–194. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Lu, Y.; Xu, M.; Zhang, D.; Ruoff, R.S.; Stevenson, K.J.; Goodenough, J.B. CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries. J. Electrochem. Soc. 2011, 158, A1379–A1382. [Google Scholar] [CrossRef]
- Yang, W.; Salim, J.; Ma, C.; Ma, Z.; Sun, C.; Li, J.; Chen, L.; Kim, Y. Flowerlike Co3O4 microspheres loaded with copper nanoparticle as an efficient bifunctional catalyst for lithium–air batteries. Electrochem. Commun. 2013, 28, 13–16. [Google Scholar] [CrossRef]
- Jin, C.; Yang, Z.; Cao, X.; Lu, F.; Yang, R. A novel bifunctional catalyst of Ba0.9Co0.5Fe0.4Nb0.1O3−δ perovskite for lithium–air battery. Int. J. Hydrogen Energy 2014, 39, 2526–2530. [Google Scholar] [CrossRef]
- Farrusseng, D.; Aguado, S.; Pinel, C. Metal–organic frameworks: Opportunities for catalysis. Angew. Chem. Int. Ed. 2009, 48, 7502–7513. [Google Scholar] [CrossRef] [PubMed]
- Haider, M.D.; Iqbal, N.; Rizvi, S.A.M.; Noor, T.; Hanif, S.; Anwar, R. ZIF-67 derived Cu doped electrocatalyst for oxygen reduction reaction. J. Electrochem. Energy Convers. Storage 2020, 18, 021001. [Google Scholar] [CrossRef]
- Xia, B.Y.; Yan, Y.; Li, N.; Wu, H.B.; Lou, X.W.D.; Wang, X. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006. [Google Scholar] [CrossRef]
- Noor, T.; Zaman, N.; Nasir, H.; Iqbal, N.; Hussain, Z. Electro catalytic study of NiO-MOF/rGO composites for methanol oxidation reaction. Electrochim. Acta 2019, 307, 1–12. [Google Scholar] [CrossRef]
- Wang, R.; Dong, X.Y.; Du, J.; Zhao, J.Y.; Zang, S.Q. MOF-Derived bifunctional Cu3P nanoparticles coated by a N, P–codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 2018, 30, 1703711. [Google Scholar] [CrossRef]
- Yaqoob, L.; Noor, T.; Iqbal, N.; Nasir, H.; Zaman, N. Development of nickel-BTC-MOF-derived nanocomposites with rGO towards electrocatalytic oxidation of methanol and its product analysis. Catalysts 2019, 9, 856. [Google Scholar] [CrossRef] [Green Version]
- Ghoshal, S.; Zaccarine, S.; Anderson, G.C.; Martinez, M.B.; Hurst, K.E.; Pylypenko, S.; Pivovar, B.S.; Alia, S.M. ZIF 67 Based Highly Active Electrocatalysts as Oxygen Electrodes in Water Electrolyzer. ACS Appl. Energy Mater. 2019, 2, 5568–5576. [Google Scholar] [CrossRef]
- Wang, H.; Wei, L.; Liu, J.; Shen, J. Hollow bimetal ZIFs derived Cu/Co/N co-coordinated ORR electrocatalyst for microbial fuel cells. Int. J. Hydrogen Energy 2020, 45, 4481–4489. [Google Scholar] [CrossRef]
- Yoon, H.; Lee, S.; Oh, S.; Park, H.; Choi, S.; Oh, M. Synthesis of Bimetallic Conductive 2D Metal-Organic Framework (CoxNiy-CAT) and Its Mass Production: Enhanced Electrochemical Oxygen Reduction Activity. Small 2019, 15, 1805232. [Google Scholar] [CrossRef]
- Wang, C.; Liu, D.; Lin, W. Metal–organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc. 2013, 135, 13222–13234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanif, S.; Iqbal, N.; Shi, X.; Noor, T.; Ali, G.; Kannan, A. NiCo-N-doped carbon nanotubes based cathode catalyst for alkaline membrane fuel cell. Renew. Energy 2020, 154, 508–516. [Google Scholar] [CrossRef]
- Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889. [Google Scholar] [CrossRef] [PubMed]
- Palaniselvam, T.; Biswal, B.P.; Banerjee, R.; Kurungot, S. Zeolitic Imidazolate Framework (ZIF)-Derived, Hollow-Core, Nitrogen-Doped Carbon Nanostructures for Oxygen-Reduction Reactions in PEFCs. Chem. A Eur. J. 2013, 19, 9335–9342. [Google Scholar] [CrossRef]
- Hanif, S.; Shi, X.; Iqbal, N.; Noor, T.; Anwar, R.; Kannan, A. ZIF derived PtNiCo/NC cathode catalyst for proton exchange membrane fuel cell. Appl. Catal. B Environ. 2019, 258, 117947. [Google Scholar] [CrossRef]
- Xia, W.; Zhu, J.; Guo, W.; An, L.; Xia, D.; Zou, R. Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. J. Mater. Chem. A 2014, 2, 11606–11613. [Google Scholar] [CrossRef]
- Aijaz, A.; Masa, J.; Rösler, C.; Xia, W.; Weide, P.; Botz, A.J.; Fischer, R.A.; Schuhmann, W.; Muhler, M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew. Chem. Int. Ed. 2016, 55, 4087–4091. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Zhong, H.; Bao, D.; Yan, J.; Zhang, X. In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231. [Google Scholar] [CrossRef]
- Ahmad, R.; Iqbal, N.; Baig, M.; Noor, T.; Ali, G.; Gul, I. ZIF-67 derived NCNT/S@Ni(OH)2 decorated Ni foam based electrode material for high-performance supercapacitors. Electrochem. Acta 2020, 364, 137147. [Google Scholar] [CrossRef]
- Yang, J.; Xu, J.J. Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions. Electrochem. Commun. 2003, 5, 306–311. [Google Scholar] [CrossRef]
- Lima, F.H.; Calegaro, M.L.; Ticianelli, E.A. Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media. J. Electroanal. Chem. 2006, 590, 152–160. [Google Scholar] [CrossRef]
- Masa, J.; Xia, W.; Sinev, I.; Zhao, A.; Sun, Z.; Grützke, S.; Weide, P.; Muhler, M.; Schuhmann, W. MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem. Int. Ed. 2014, 53, 8508–8512. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noor, T.; Raffi, U.; Iqbal, N.; Yaqoob, L.; Zaman, N. Kinetic evaluation and comparative study of cationic and anionic dyes adsorption on Zeolitic imidazolate frameworks based metal organic frameworks. Mater. Res. Express 2019, 6, 125088. [Google Scholar] [CrossRef]
- Shi, X.; Iqbal, N.; Kunwar, S.; Wahab, G.; Kasat, H.; Kannan, A.M. PtCo@ NCNTs cathode catalyst using ZIF-67 for proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2018, 43, 3520–3526. [Google Scholar] [CrossRef]
- Fan, Q.; Guo, Z.; Li, Z.; Wang, Z.; Yang, L.; Chen, Q.; Liu, Z.; Wang, X. Atomic layer deposition of cobalt carbide thin films from cobalt amidinate and hydrogen plasma. ACS Appl. Electron. Mater. 2019, 1, 444–453. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, S.; Liu, Y.; Lei, X. Cobalt oxide microtubes with balsam pear-shaped outer surfaces as anode material for lithium ion batteries. Ionics 2015, 21, 2423–2430. [Google Scholar] [CrossRef]
- Johnson, C.; Dees, D.; Mansuetto, M.; Thackeray, M.; Vissers, D.; Argyriou, D.; Loong, C.-K.; Christensen, L. Structural and electrochemical studies of α-manganese dioxide (α-MnO2). J. Power Sources 1997, 68, 570–577. [Google Scholar] [CrossRef]
- Ahmadian, H.; Veisi, H.; Karami, C.; Sedrpoushan, A.; Nouri, M.; Jamshidi, F.; Alavioon, I. Cobalt manganese oxide nanoparticles as recyclable catalyst for efficient synthesis of 2-aryl-1-arylmethyl-1H-1, 3-benzimidazoles under solvent-free conditions. Appl. Organomet. Chem. 2015, 29, 266–269. [Google Scholar] [CrossRef]
- Rapson, T.D.; Kusuoka, R.; Butcher, J.; Musameh, M.; Dunn, C.J.; Church, J.S.; Warden, A.C.; Blanford, C.F.; Nakamura, N.; Sutherland, T.D. Bioinspired electrocatalysts for oxygen reduction using recombinant silk films. J. Mater. Chem. A 2017, 5, 10236–10243. [Google Scholar] [CrossRef]
- Wang, W.; Geng, J.; Kuai, L.; Li, M.; Geng, B. Porous Mn2O3: A Low-Cost Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media with Comparable Activity to Pt/C. Chem. Eur. J. 2016, 22, 9909–9913. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Zhang, X.; Cai, J.; Liu, W.; Lin, S. A novel MnO2/rGO composite prepared by electrodeposition as a non-noble metal electrocatalyst for ORR. J. Appl. Electrochem. 2019, 49, 767–777. [Google Scholar] [CrossRef]
- Chhetri, B.P.; Parnell, C.M.; Wayland, H.; RanguMagar, A.B.; Kannarpady, G.; Watanabe, F.; Albkuri, Y.M.; Biris, A.S.; Ghosh, A. Chitosan-derived NiO-Mn2O3/C nanocomposites as non-precious catalysts for enhanced oxygen reduction reaction. ChemistrySelect 2018, 3, 922–932. [Google Scholar] [CrossRef]
- Atabaki, M.M.; Kovacevic, R. Graphene composites as anode materials in lithium-ion batteries. Electron. Mater. Lett. 2013, 9, 133–153. [Google Scholar] [CrossRef]
- Bae, S.H.; Kim, J.E.; Randriamahazaka, H.; Moon, S.Y.; Park, J.Y.; Oh, I.K. Seamlessly conductive 3D nanoarchitecture of core-shell Ni-Co nanowire network for highly efficient oxygen evolution. Adv. Energy Mater. 2017, 7, 1601492. [Google Scholar] [CrossRef]
- Lin, X. The Kinetic and Mechanism of the Oxygen Reduction Reaction on Pt, Au, Cu, PtCu/C and CuAu/C in Alkaline Media. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 2016. [Google Scholar]
- Ahmad, R.; Iqbal, N.; Noor, T. Development of ZIF-Derived Nanoporous Carbon and Cobalt Sulfide-Based Electrode Material for Supercapacitor. Materials 2019, 12, 2940. [Google Scholar] [CrossRef] [Green Version]
Sample Element | ZCNT | ZCNT-M |
---|---|---|
C wt % | 50.02 | 15.98 |
O wt % | 19.07 | 47.91 |
Co wt% | 30.91 | 9.99 |
Mn wt% | - | 24.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salahuddin, U.; Iqbal, N.; Noor, T.; Hanif, S.; Ejaz, H.; Zaman, N.; Ahmed, S. ZIF-67 Derived MnO2 Doped Electrocatalyst for Oxygen Reduction Reaction. Catalysts 2021, 11, 92. https://doi.org/10.3390/catal11010092
Salahuddin U, Iqbal N, Noor T, Hanif S, Ejaz H, Zaman N, Ahmed S. ZIF-67 Derived MnO2 Doped Electrocatalyst for Oxygen Reduction Reaction. Catalysts. 2021; 11(1):92. https://doi.org/10.3390/catal11010092
Chicago/Turabian StyleSalahuddin, Usman, Naseem Iqbal, Tayyaba Noor, Saadia Hanif, Haider Ejaz, Neelam Zaman, and Safeer Ahmed. 2021. "ZIF-67 Derived MnO2 Doped Electrocatalyst for Oxygen Reduction Reaction" Catalysts 11, no. 1: 92. https://doi.org/10.3390/catal11010092
APA StyleSalahuddin, U., Iqbal, N., Noor, T., Hanif, S., Ejaz, H., Zaman, N., & Ahmed, S. (2021). ZIF-67 Derived MnO2 Doped Electrocatalyst for Oxygen Reduction Reaction. Catalysts, 11(1), 92. https://doi.org/10.3390/catal11010092