Facile Surfactant-Assisted Synthesis of BiVO4 Nanoparticulate Films for Solar Water Splitting
Abstract
:1. Introduction
2. Results and discussion
2.1. Synthesis and Structural Analysis of the BiVO4 Nanoparticles
2.2. Preparation of BiVO4 Films and Optical Characterization
2.3. Photoelectrochemical Characterization
3. Materials and Methods
3.1. Synthesis of BiVO4 Nanoparticles
3.2. Preparation of the Nanostructured BiVO4 Films
3.3. Structural and Morphology Characterization of the BiVO4 Nanoparticles
3.4. Optical and Photoelectrochemical Characterization of the BiVO4 Photoanodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Zhang, Z.; Chi, L.; Nair, A.K.; Shangguan, W.; Jiang, Z. Recent advances in visible-light-driven photoelectrochemical water splitting: Catalyst nanostructures and reaction systems. Nano-Micro Lett. 2016, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lewis, N.S.; Nocera, D.G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [Green Version]
- Soni, D.; Parsoya, P.; Menariya, B.K.; Vyas, R.; Ameta, R. Photoelectrochemical cells. Sol. Energy Convers. Storage Photochem. Modes 2015, 414, 29–53. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Mc Donald, K.J.; Choi, K.S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42, 2321–2337. [Google Scholar] [CrossRef] [PubMed]
- Roth, R.S.; Waring, J.L. Synthesis And Stability Of Bismutotantalite, Stibiotantalite And Chemically Similar AB04 Compounds. Am. Mineral. 1963, 48, 1348–1356. [Google Scholar]
- Kim, J.H.; Lee, J.S. Elaborately Modified BiVO4 Photoanodes for Solar Water Splitting. Adv. Mater. 2019, 31, 1806938. [Google Scholar] [CrossRef]
- Zhu, J.; Fan, F.; Chen, R.; An, H.; Feng, Z.; Li, C. Direct Imaging of Highly Anisotropic Photogenerated Charge Separations on Different Facets of a Single BiVO4 Photocatalyst. Angew. Chemie Int. Ed. 2015, 54, 9111–9114. [Google Scholar] [CrossRef]
- Zhang, H.M.; Liu, J.B.; Wang, H.; Zhang, W.X.; Yan, H. Rapid microwave-assisted synthesis of phase controlled BiVO4 nanocrystals and research on photocatalytic properties under visible light irradiation. J. Nanoparticle Res. 2008, 10, 767–774. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, Y.; Kudo, A. Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process. J. Solid State Chem. 2009, 182, 223–228. [Google Scholar] [CrossRef]
- Gotić, M.; Musić, S.; Ivanda, M.; Šoufek, M.; Popović, S. Synthesis and characterisation of bismuth(III) vanadate. J. Mol. Struct. 2005, 744–747, 535–540. [Google Scholar] [CrossRef]
- Khademinia, S.; Behzad, M.; Jahromi, H.S. Solid state synthesis, characterization, optical properties and cooperative catalytic performance of bismuth vanadate nanocatalyst for Biginelli reactions. RSC Adv. 2015, 5, 24313–24318. [Google Scholar] [CrossRef]
- Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 2001, 13, 4624–4628. [Google Scholar] [CrossRef]
- Tan, H.L.; Amal, R.; Ng, Y.H. Exploring the Different Roles of Particle Size in Photoelectrochemical and Photocatalytic Water Oxidation on BiVO4. ACS Appl. Mater. Interfaces 2016, 8, 28607–28614. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K.; Lee, D.; Lumley, M.A.; Choi, K.S. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chem. Soc. Rev. 2019, 48, 2126–2157. [Google Scholar] [CrossRef] [PubMed]
- Sayama, K.; Nomura, A.; Arai, T.; Sugita, T.; Abe, R.; Yanagida, M.; Oi, T.; Iwasaki, Y.; Abe, Y.; Sugihara, H. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag Ion treatment. J. Phys. Chem. B 2006, 110, 11352–11360. [Google Scholar] [CrossRef]
- Toma, F.M.; Cooper, J.K.; Kunzelmann, V.; McDowell, M.T.; Yu, J.; Larson, D.M.; Borys, N.J.; Abelyan, C.; Beeman, J.W.; Yu, K.M.; et al. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nat. Commun. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, J.; Guo, L.; Bao, N.; Grimes, C.A. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 2011, 11, 1928–1933. [Google Scholar] [CrossRef]
- Abdi, F.F.; Savenije, T.J.; May, M.M.; Dam, B.; van de Krol, R. The origin of slow carrier transport in BiVO4 thin film photoanodes: A time-resolved microwave conductivity study. J. Phys. Chem. Lett. 2013, 4, 2752–2757. [Google Scholar] [CrossRef]
- Berglund, S.P.; Flaherty, D.W.; Hahn, N.T.; Bard, A.J.; Mullins, C.B. Photoelectrochemical oxidation of water using nanostructured BiVO 4 films. J. Phys. Chem. C 2011, 115, 3794–3802. [Google Scholar] [CrossRef]
- Cowan, A.J.; Durrant, J.R. Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chem. Soc. Rev. 2013, 42, 2281–2293. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Alivisatos, A.P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Gonçalves, A.A.S.; Jiang, B.; Jaroniec, M. A generalized strategy for synthesizing crystalline bismuth-containing nanomaterials. Nanoscale 2020, 12, 8277–8284. [Google Scholar] [CrossRef] [PubMed]
- Helal, A.; El-Sheikh, S.M.; Yu, J.; Eid, A.I.; El-Haka, S.A.; Samra, S.E. Novel synthesis of BiVO4 using homogeneous precipitation and its enhanced photocatalytic activity. J. Nanoparticle Res. 2020, 22. [Google Scholar] [CrossRef]
- Jiang, H.; Dai, H.; Meng, X.; Zhang, L.; Deng, J.; Ji, K. Morphology-dependent photocatalytic performance of monoclinic BiVO4 for methyl orange degradation under visible-light irradiation. Cuihua Xuebao/Chinese J. Catal. 2011, 32, 939–949. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; Ding, J.; Peng, H.; Chen, K. Facile synthesis and photocatalytic activity of monoclinic BiVO 4 micro/nanostructures with controllable morphologies. Mater. Res. Bull. 2012, 47, 3814–3818. [Google Scholar] [CrossRef]
- García-Pérez, U.M.; Sepúlveda-Guzmán, S.; Martínez- de la Cruz, A.; Peral, J. Selective synthesis of monoclinic bismuth vanadate powders by surfactant-assisted co-precipitation method: Study of their electrochemical and photocatalytic properties. Int. J. Electrochem. Sci. 2012, 7, 9622–9632. [Google Scholar]
- Long, M.; Cai, W. Photoelectrochemical Properties of BiVO4 Film Electrode in Alkaline Solution. Chinese J. Catal. 2008, 29, 881–883. [Google Scholar] [CrossRef]
- Wolpert, C.; Emmler, T.; Villa Vidaller, M.; Elsenberg, A.; Shinoda, K.; Schieda, M.; Gärtner, F.; Akedo, J.; Klassen, T. Aerosol-Deposited BiVO4 Photoelectrodes for Hydrogen Generation. J. Therm. Spray Technol. 2021, 30, 603–616. [Google Scholar] [CrossRef]
- Graciaa, A.; Ben Ghoulam, M.; Marion, G.; Lachaise, J. Critical concentrations and compositions of mixed micelles of sodium dodecylbenzenesulfonate, tetradecyltrimethylammonium bromide, and polyoxyethylene octylphenols. J. Phys. Chem. 1989, 93, 4167–4173. [Google Scholar] [CrossRef]
- Su, Y.L.; Liu, H.Z. Temperature-dependent solubilization of PEO-PPO-PEO block copolymers and their application for extraction trace organics from aqueous solutions. Korean J. Chem. Eng. 2003, 20, 343–346. [Google Scholar] [CrossRef]
- Sleight, A.W.; Chen, H.Y.; Ferretti, A.; Cox, D.E. Crystal growth and structure of BiVO4. Mater. Res. Bull. 1979, 14, 1571–1581. [Google Scholar] [CrossRef]
- Patterson, A.L. The scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular. J. Am.Chem.Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Hu, J.; Zhai, C.; Zeng, L.; Du, Y.; Zhu, M. Enhanced electrocatalytic ethanol oxidation reaction in alkaline media over Pt on a 2D BiVO4-modified electrode under visible light irradiation. Catal. Sci. Technol. 2018, 8, 3562–3571. [Google Scholar] [CrossRef]
- Bommineedi, L.K.; Pandit, B.; Sankapal, B.R. Spongy nano surface architecture of chemically grown BiVO4: High-capacitance retentive electrochemical supercapacitor. Int. J. Hydrogen Energy 2021, 46, 25586–25595. [Google Scholar] [CrossRef]
- Dolić, S.D.; Jovanović, D.J.; Smits, K.; Babić, B.; Marinović-Cincović, M.; Porobić, S.; Dramićanin, M.D. A comparative study of photocatalytically active nanocrystalline tetragonal zyrcon-type and monoclinic scheelite-type bismuth vanadate. Ceram. Int. 2018, 44, 17953–17961. [Google Scholar] [CrossRef]
- Galembeck, A.; Alves, O.L. BiVO4 thin film preparation by metalorganic decomposition. Thin Solid Films 2000, 365, 90–93. [Google Scholar] [CrossRef]
- Hardcastle, F.D.; Wachs, I.E. Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. J. Phys. Chem. 2002, 95, 5031–5041. [Google Scholar] [CrossRef]
- Liu, J.B.; Wang, H.; Wang, S.; Yan, H. Hydrothermal preparation of BiVO4 powders. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2003, 104, 36–39. [Google Scholar] [CrossRef]
- Shukla, A.; Bhat, S.D.; Pillai, V.K. Simultaneous unzipping and sulfonation of multi-walled carbon nanotubes to sulfonated graphene nanoribbons for nanocomposite membranes in polymer electrolyte fuel cells. J. Memb. Sci. 2016, 520, 657–670. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Stat. Sol. 1966, 1, 627–637. [Google Scholar] [CrossRef]
- Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121, 11459–11467. [Google Scholar] [CrossRef]
- Lee, D.K.; Choi, K.S. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat. Energy 2018, 3, 53–60. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Jung, S.; Ferrer, I.M.; Chatman, S.M.; Peters, J.C.; Jaramillo, T.F. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. J. Am. Chem. Soc. 2015, 137, 4347–4357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, B.K.; Han, G.S.; Baek, J.H.; Lee, D.G.; Song, Y.H.; Kwon, S.B.; Cho, I.S.; Jung, H.S.; Yoon, D.H. Nanodome Structured BiVO4/GaOxN1−x Photoanode for Solar Water Oxidation. Adv. Mater. Interfaces 2017, 4, 1–8. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Z.; Cui, S.; Du, P. Cuprous oxide thin film directly electrodeposited from a simple copper salt on conductive electrode for efficient oxygen evolution reaction. Electrochim. Acta 2016, 187, 381–388. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montañés, L.; Mesa, C.A.; Gutiérrez-Blanco, A.; Robles, C.; Julián-López, B.; Giménez, S. Facile Surfactant-Assisted Synthesis of BiVO4 Nanoparticulate Films for Solar Water Splitting. Catalysts 2021, 11, 1244. https://doi.org/10.3390/catal11101244
Montañés L, Mesa CA, Gutiérrez-Blanco A, Robles C, Julián-López B, Giménez S. Facile Surfactant-Assisted Synthesis of BiVO4 Nanoparticulate Films for Solar Water Splitting. Catalysts. 2021; 11(10):1244. https://doi.org/10.3390/catal11101244
Chicago/Turabian StyleMontañés, Laura, Camilo A. Mesa, Ana Gutiérrez-Blanco, Christian Robles, Beatriz Julián-López, and Sixto Giménez. 2021. "Facile Surfactant-Assisted Synthesis of BiVO4 Nanoparticulate Films for Solar Water Splitting" Catalysts 11, no. 10: 1244. https://doi.org/10.3390/catal11101244
APA StyleMontañés, L., Mesa, C. A., Gutiérrez-Blanco, A., Robles, C., Julián-López, B., & Giménez, S. (2021). Facile Surfactant-Assisted Synthesis of BiVO4 Nanoparticulate Films for Solar Water Splitting. Catalysts, 11(10), 1244. https://doi.org/10.3390/catal11101244