Atomic Structure of Pd-, Pt-, and PdPt-Based Catalysts of Total Oxidation of Methane: In Situ EXAFS Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst’s Testing
2.2. Catalyst Characterization
2.2.1. High-Angle Annular Dark-Field STEM Study
2.2.2. In Situ Extended X-ray Absorption Fine Structure (EXAFS) Study
- The coordination number (CN) of the 1st coordination sphere for the palladium oxide shell was fixed and equals to 4 (the same that one for bulk PdO).
- The coordination number of the 1st coordination sphere for the platinum oxide shell was fixed and equals to 6 (the same that one for bulk PtO2).
- For all edges, additional scattering was added corresponding to the Pd–OAl (Pt–OAl) scattering, where OAl is oxygen atom of the Al2O3 support.
- For all edges, additional scattering was added corresponding to the Pd–Al (Pt–Al) scattering, where Al is the aluminum atom of the Al2O3 support.
- The alloyed PdPt nanoparticles also has the core-shell structure and the Pd and Pt atoms could be at the same positions (this assumption does not allow us to distinguish the Pd–Pd, Pd–Pt and Pt–Pd scatterings).
3. Materials and Methods
3.1. Catalyst Synthesis
3.2. Catalytic Activity Tests
3.3. High Resolution Transmission Electron Microscopy
3.4. X-ray Absorption Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bykova, M.V.; Ermakov, D.Y.; Kaichev, V.V.; Bulavchenko, O.A.; Saraev, A.A.; Lebedev, M.Y.; Yakovlev, V.A. Ni-based sol–gel catalysts as promising systems for crude bio-oil upgrading: Guaiacol hydrodeoxygenation study. Appl. Catal. B 2012, 113–114, 296–307. [Google Scholar] [CrossRef]
- Khromova, S.A.; Bykova, M.V.; Bulavchenko, O.A.; Ermakov, D.Y.; Saraev, A.A.; Kaichev, V.V.; Venderbosch, R.H.; Yakovlev, V.A. Furfural hydrogenation to furfuryl alcohol over bimetallic Ni-Cu sol-gel catalyst: A model reaction for conversion of oxygenates in pyrolysis liquids. Top. Catal. 2016, 59, 1413–1423. [Google Scholar] [CrossRef]
- Panafidin, M.A.; Bukhtiyarov, A.V.; Prosvirin, I.P.; Chetyrin, I.A.; Bukhtiyarov, V.I. Model bimetallic Pd-Ag/HOPG catalysts: An XPS and STM study. Kinet. Catal. 2019, 59, 776–785. [Google Scholar] [CrossRef]
- Fedorov, A.; Saraev, A.; Kremneva, A.; Selivanova, A.; Vorokhta, M.; Šmíd, B.; Bulavchenko, O.; Yakovlev, V.; Kaichev, V. Kinetic and mechanistic study of CO oxidation over nanocomposite Cu−Fe−Al oxide catalysts. ChemCatChem 2020, 12, 4911–4921. [Google Scholar] [CrossRef]
- Ulrich, V.; Moroz, B.; Pyrjaev, P.; Sinev, I.; Bukhtiyarov, A.; Gerasimov, E.; Bukhtiyarov, V.; Cuenya, B.R.; Grünert, W. Three-way catalysis with bimetallic supported Pd-Au catalysts: Gold as a poison and as a promotor. Appl. Catal. B 2021, 282, 119614. [Google Scholar] [CrossRef]
- Gulyaeva, Y.; Alekseeva, M.V.; Bulavchenko, O.; Kremneva, A.; Saraev, A.; Gerasimov, E.; Selishcheva, S.; Kaichev, V.; Yakovlev, V. Ni-Cu high-loaded sol-gel catalysts for dehydrogenation of liquid organic hydrides: Insights into structural features and relationship with catalytic activity. Nanomaterials 2021, 11, 2017. [Google Scholar] [CrossRef]
- Smirnova, N.S.; Khramov, E.V.; Baeva, G.N.; Markov, P.V.; Bukhtiyarov, A.V.; Zubavichus, Y.V.; Stakheev, A.Y. An investigation into the bulk and surface phase transformations of bimetallic Pd-In/Al2O3 catalyst during reductive and oxidative treatments In situ. Catalysts 2021, 11, 859. [Google Scholar] [CrossRef]
- Ahmadi, M.; Mistry, H.; Roldan Cuenya, B. Tailoring the catalytic properties of metal nanoparticles via support interactions. J. Phys. Chem. Lett. 2016, 7, 3519–3533. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal. Today 2021, 373, 80–97. [Google Scholar] [CrossRef]
- Shelef, M.; McCabe, R.W. Twenty-five years after introduction of automotive catalysts: What next? Catal. Today 2000, 62, 35–50. [Google Scholar] [CrossRef]
- Haaß, F.; Fuess, H. Structural characterization of automotive catalysts. Adv. Eng. Mater. 2005, 7, 899–913. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.; Shang, H.; Gong, M.; Chen, Y. Excellent complete conversion activity for methane and CO of Pd/TiO2-Zr0.5Al0.5O1.75 catalyst used in lean-burn natural gas vehicles. J. Energy Chem. 2014, 23, 461–467. [Google Scholar] [CrossRef]
- Huang, F.; Chen, J.; Hu, W.; Li, G.; Wu, Y.; Yuan, S.; Zhong, L.; Chen, Y. Pd or PdO: Catalytic active site of methane oxidation operated close to stoichiometric air-to-fuel for natural gas vehicles. Appl. Catal. B 2017, 219, 73–81. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Zhang, G.; Wu, Y.; Shen, P.; Zhong, L.; Chen, Y. Tuning the interactions among Ce, Pd and Rh over Ce-modified Pd-Rh three-way catalyst for exhaust treatment of natural gas vehicles. J. Environ. Chem. Eng. 2021, 9, 105570. [Google Scholar] [CrossRef]
- Willis, J.J.; Gallo, A.; Sokaras, D.; Aljama, H.; Nowak, S.H.; Goodman, E.D.; Wu, L.; Tassone, C.J.; Jaramillo, T.F.; Abild-Pedersen, F.; et al. Systematic structure-property relationship studies in Palladium-catalyzed methane complete combustion. ACS Catal. 2017, 7, 7810–7821. [Google Scholar] [CrossRef]
- Nilsson, J.; Carlsson, P.-A.; Martin, N.M.; Adams, E.C.; Agostini, G.; Grönbeck, H.; Skoglundh, M. Methane oxidation over Pd/Al2O3 under rich/lean cycling followed by operando XAFS and modulation excitation spectroscopy. J. Catal. 2017, 356, 237–245. [Google Scholar] [CrossRef]
- Chen, J.; Zhong, J.; Wu, Y.; Hu, W.; Qu, P.; Xiao, X.; Zhang, G.; Liu, X.; Jiao, Y.; Zhong, L.; et al. Particle size effects in stoichiometric methane combustion: Structure-activity relationship of Pd catalyst supported on gamma-Alumina. ACS Catal. 2020, 10, 10339–10349. [Google Scholar] [CrossRef]
- Bychkov, V.Y.; Tyulenin, Y.P.; Gorenberg, A.Y.; Sokolov, S.; Korchak, V.N. Evolution of Pd catalyst structure and activity during catalytic oxidation of methane and ethane. Appl. Catal. A 2014, 485, 1–9. [Google Scholar] [CrossRef]
- Sadokhina, N.; Ghasempour, F.; Auvray, X.; Smedler, G.; Nylén, U.; Olofsson, M.; Olsson, L. An experimental and kinetic modelling study for methane oxidation over Pd-based catalyst: Inhibition by water. Catal. Lett. 2017, 147, 2360–2371. [Google Scholar] [CrossRef] [Green Version]
- Baylet, A.; Marecot, P.; Duprez, D.; Castellazzi, P.; Groppi, G.; Forzatti, P. In situ Raman and in situ XRD analysis of PdO reduction and Pd degrees oxidation supported on gamma-Al2O3 catalyst under different atmospheres. Phys. Chem. Chem. Phys. 2011, 13, 4607–4613. [Google Scholar] [CrossRef]
- Murata, K.; Kosuge, D.; Ohyama, J.; Mahara, Y.; Yamamoto, Y.; Arai, S.; Satsuma, A. Exploiting metal-support interactions to tune the redox properties of supported Pd catalysts for methane combustion. ACS Catal. 2019, 10, 1381–1387. [Google Scholar] [CrossRef]
- Zhu, G.; Han, J.; Zemlyanov, D.Y.; Ribeiro, F.H. The turnover rate for the catalytic combustion of methane over palladium is not sensitive to the structure of the catalyst. J. Am. Chem. Soc. 2004, 126, 9896–9897. [Google Scholar] [CrossRef]
- Stakheev, A.Y.; Batkin, A.M.; Teleguina, N.S.; Bragina, G.O.; Zaikovsky, V.I.; Prosvirin, I.P.; Khudorozhkov, A.K.; Bukhtiyarov, V.I. Particle size effect on CH4 oxidation over noble metals: Comparison of Pt and Pd catalysts. Top. Catal. 2013, 56, 306–310. [Google Scholar] [CrossRef]
- Murata, K.; Ohyama, J.; Yamamoto, Y.; Arai, S.; Satsuma, A. Methane combustion over Pd/Al2O3 catalysts in the presence of water: Effects of Pd particle size and alumina crystalline phase. ACS Catal. 2020, 10, 8149–8156. [Google Scholar] [CrossRef]
- Hutchings, G.J. Nanocrystalline gold and gold-palladium alloy oxidation catalysts: A personal reflection on the nature of the active sites. Dalton Trans. 2008, 5523–5536. [Google Scholar] [CrossRef]
- Shan, S.; Petkov, V.; Yang, L.; Luo, J.; Joseph, P.; Mayzel, D.; Prasai, B.; Wang, L.; Engelhard, M.; Zhong, C.J. Atomic-structural synergy for catalytic CO oxidation over palladium-nickel nanoalloys. J. Am. Chem. Soc. 2014, 136, 7140–7151. [Google Scholar] [CrossRef]
- Yashnik, S.A.; Denisov, S.P.; Danchenko, N.M.; Ismagilov, Z.R. Synergetic effect of Pd addition on catalytic behavior of monolithic platinum–manganese–alumina catalysts for diesel vehicle emission control. Appl. Catal. B 2016, 185, 322–336. [Google Scholar] [CrossRef]
- Yashnik, S.A.; Chesalov, Y.A.; Ishchenko, A.V.; Kaichev, V.V.; Ismagilov, Z.R. Effect of Pt addition on sulfur dioxide and water vapor tolerance of Pd-Mn-hexaaluminate catalysts for high-temperature oxidation of methane. Appl. Catal. B 2017, 204, 89–106. [Google Scholar] [CrossRef]
- Nguyen, T.S.; McKeever, P.; Arredondo-Arechavala, M.; Wang, Y.-C.; Slater, T.J.A.; Haigh, S.J.; Beale, A.M.; Thompson, J.M. Correlation of the ratio of metallic to oxide species with activity of PdPt catalysts for methane oxidation. Catal. Sci. Technol. 2020, 10, 1408–1421. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.Y.; Jeon, J.H.; Lee, D.H.; Rao, K.N.; Oh, D.G.; Jang, E.J.; Kim, E.; Na, S.C.; Han, H.S.; et al. Effect of Pt pre-sintering on the durability of PtPd/Al2O3 catalysts for CH4 oxidation. Appl. Catal. B 2020, 260, 118098. [Google Scholar] [CrossRef]
- Xiong, H.; Kunwar, D.; Jiang, D.; García-Vargas, C.E.; Li, H.; Du, C.; Canning, G.; Pereira-Hernandez, X.I.; Wan, Q.; Lin, S.; et al. Engineering catalyst supports to stabilize PdOx two-dimensional rafts for water-tolerant methane oxidation. Nat. Catal. 2021, 4, 830–839. [Google Scholar] [CrossRef]
- Mussio, A.; Danielis, M.; Divins, N.J.; Llorca, J.; Colussi, S.; Trovarelli, A. Structural evolution of bimetallic PtPd/CeO2 methane oxidation catalysts prepared by dry milling. ACS Appl. Mater. Interfaces 2021, 13, 31614–31623. [Google Scholar] [CrossRef]
- Carrillo, C.; Johns, T.R.; Xiong, H.; DeLaRiva, A.; Challa, S.R.; Goeke, R.S.; Artyushkova, K.; Li, W.; Kim, C.H.; Datye, A.K. Trapping of mobile Pt species by PdO nanoparticles under oxidizing conditions. J. Phys. Chem. Lett. 2014, 5, 2089–2093. [Google Scholar] [CrossRef]
- Johns, T.R.; Goeke, R.S.; Ashbacher, V.; Thüne, P.C.; Niemantsverdriet, J.W.; Kiefer, B.; Kim, C.H.; Balogh, M.P.; Datye, A.K. Relating adatom emission to improved durability of Pt–Pd diesel oxidation catalysts. J. Catal. 2015, 328, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Bukhtiyarov, A.V.; Prosvirin, I.P.; Saraev, A.A.; Klyushin, A.Y.; Knop-Gericke, A.; Bukhtiyarov, V.I. In situ formation of the active sites in Pd-Au bimetallic nanocatalysts for CO oxidation: NAP (near ambient pressure) XPS and MS study. Faraday Discuss. 2018, 208, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Panafidin, M.A.; Bukhtiyarov, A.V.; Klyushin, A.Y.; Prosvirin, I.P.; Chetyrin, I.A.; Bukhtiyarov, V.I. Pd-Cu/HOPG and Pd-Ag/HOPG model catalysts in CO and methanol oxidations at submillibar pressures. Kinet. Catal. 2020, 60, 832–841. [Google Scholar] [CrossRef]
- Glyzdova, D.V.; Afonasenko, T.N.; Khramov, E.V.; Leont’eva, N.N.; Prosvirin, I.P.; Bukhtiyarov, A.V.; Shlyapin, D.A. Liquid-phase acetylene hydrogenation over Ag-modified Pd/Sibunit catalysts: Effect of Pd to Ag molar ratio. Appl. Catal. A 2020, 600, 117627. [Google Scholar] [CrossRef]
- Nilsson, J.; Carlsson, P.-A.; Martin, N.M.; Velin, P.; Meira, D.M.; Grönbeck, H.; Skoglundh, M. Oxygen step-response experiments for methane oxidation over Pd/Al2O3: An in situ XAFS study. Catal. Commun. 2018, 109, 24–27. [Google Scholar] [CrossRef]
- Singh, J.; Alayon, E.M.; Tromp, M.; Safonova, O.V.; Glatzel, P.; Nachtegaal, M.; Frahm, R.; van Bokhoven, J.A. Generating highly active partially oxidized platinum during oxidation of carbon monoxide over Pt/Al2O3: In situ, time-resolved, and high-energy-resolution X-ray absorption spectroscopy. Angew. Chem. 2008, 47, 9260–9264. [Google Scholar] [CrossRef]
- Alayon, E.M.C.; Singh, J.; Nachtegaal, M.; Harfouche, M.; van Bokhoven, J.A. In situ XAS probes partially oxidized platinum generating high activity for CO oxidation. J. Phys. Conf. Ser. 2009, 190, 012152. [Google Scholar] [CrossRef]
- Marchionni, V.; Kambolis, A.; Nachtegaal, M.; Kröcher, O.; Ferri, D. High energy X-ray diffraction and IR spectroscopy of Pt/Al2O3 during CO oxidation in a novel catalytic reactor cell. Catal. Struct. React. 2017, 3, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Jang, E.J.; Oh, D.G.; Szanyi, J.; Kwak, J.H. Morphology and size of Pt on Al2O3: The role of specific metal-support interactions between Pt and Al2O3. J. Catal. 2020, 385, 204–212. [Google Scholar] [CrossRef]
- Martin, N.M.; Nilsson, J.; Skoglundh, M.; Adams, E.C.; Wang, X.; Smedler, G.; Raj, A.; Thompsett, D.; Agostini, G.; Carlson, S.; et al. Study of methane oxidation over alumina supported Pd–Pt catalysts using operando DRIFTS/MS and in situ XAS techniques. Catal. Struct. React. 2017, 3, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Shikina, N.V.; Yashnik, S.A.; Gavrilova, A.A.; Nikolaeva, O.A.; Dovlitova, L.S.; Ishchenko, A.V.; Ismagilov, Z.R. Effect of the conditions of solution combustion synthesis on the properties of monolithic Pt-MnOx catalysts for deep oxidation of hydrocarbons. Kinet. Catal. 2020, 61, 809–823. [Google Scholar] [CrossRef]
- Shikina, N.V.; Yashnik, S.A.; Gavrilova, A.A.; Ishchenko, A.V.; Dovlitova, L.S.; Khairulin, S.R.; Ismagilov, Z.R. Effect of glycine addition on physicochemical and catalytic properties of Mn, Mn-La and Mn-Ce monolithic catalysts prepared by solution combustion synthesis. Catal. Lett. 2019, 149, 2535–2551. [Google Scholar] [CrossRef]
- Chernyshov, A.A.; Veligzhanin, A.A.; Zubavichus, Y.V. Structural materials science end-station at the kurchatov synchrotron radiation source: Recent instrumentation upgrades and experimental results. Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 603, 95–98. [Google Scholar] [CrossRef]
- Veligzhanin, A.A.; Zubavichus, Y.V.; Chernyshov, A.A.; Trigub, A.L.; Khlebnikov, A.S.; Nizovskii, A.I.; Khudorozhkov, A.K.; Beck, I.É.; Bukhtiyarov, V.I. An in situ cell for investigation of the catalyst structure using synchrotron radiation. J. Struct. Chem. 2011, 51, 20–27. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [Green Version]
- ISCD (Inorganic Crystal Structure Database). Available online: https://icsd.products.fiz-karlsruhe.de/ (accessed on 1 September 2021).
- Rehr, J.J.; Mustre de Leon, J.; Zabinsky, S.I.; Albers, R.C. Theoretical X-ray absorption fine structure standards. J. Am. Chem. Soc. 1991, 113, 5135–5140. [Google Scholar] [CrossRef]
Fresh (RT) | 200 °C | 300 °C | 400 °C | After Reaction (RT) | ||
---|---|---|---|---|---|---|
Pd/Al2O3 (Pd K-edge) | ||||||
Fraction of metal | 7% | 4% | 2% | 0% | 6% | |
CN (Metal core) | Pdmet | 2.9 | 2.7 | 2.0 | – | 2.8 |
CNs (Oxide shell) | O | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
OAl | 0.7 | 1.0 | 1.1 | 1.2 | 1.0 | |
Pd | 2.6 | 1.9 | 0.9 | 0.8 | 3.1 | |
Pd | 3.3 | 3.0 | 2.0 | 2.0 | 3.6 | |
Pt/Al2O3 (Pt L3-edge) | ||||||
Fraction of metal | 25% | 20% | 16% | 16% | 23% | |
CN (Metal core) | Ptmet | 6.9 | 4.5 | 3.8 | 3.4 | 5.6 |
CNs (Oxide shell) | O | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |
OAl | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | |
Al | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | |
Pt | 1.1 | 0.9 | 0.8 | 0.8 | 0.8 | |
O | 5.5 | 3.3 | 3.5 | 3.4 | 3.8 | |
O | 1.7 | 1.3 | 1.3 | 1.1 | 1.1 | |
PdPt/Al2O3 (Pd K-edge) | ||||||
Fraction of metal | 9% | 12% | 10% | 10% | 10% | |
CN (Metal core) | Pd/Ptmet | 1.5 | 0.9 | 1.0 | 0.9 | 0.8 |
CNs (Oxide shell) | O | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
OAl | 1.3 | 1.0 | 1.1 | 1.1 | 1.0 | |
Al | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | |
Pd/Pt | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | |
Pd/Pt | 1.0 | 0.9 | 1.0 | 0.9 | 0.9 | |
PdPt/Al2O3 (Pt L3-edge) | ||||||
Fraction of metal | 25% | 26% | 24% | 25% | 27% | |
CN (Metal core) | Pt/Pdmet | 4.0 | 3.6 | 3.4 | 2.8 | 3.6 |
CNs (Oxide shell) | O | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |
OAl | 1.2 | 1.5 | 1.2 | 1.2 | 1.5 | |
Al | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | |
Pt/Pd | 1.6 | 0.8 | 0.9 | 0.8 | 0.8 | |
O | 5.8 | 3.3 | 3.5 | 3.5 | 3.1 | |
O | 1.0 | 1.3 | 1.1 | 1.1 | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saraev, A.A.; Yashnik, S.A.; Gerasimov, E.Y.; Kremneva, A.M.; Vinokurov, Z.S.; Kaichev, V.V. Atomic Structure of Pd-, Pt-, and PdPt-Based Catalysts of Total Oxidation of Methane: In Situ EXAFS Study. Catalysts 2021, 11, 1446. https://doi.org/10.3390/catal11121446
Saraev AA, Yashnik SA, Gerasimov EY, Kremneva AM, Vinokurov ZS, Kaichev VV. Atomic Structure of Pd-, Pt-, and PdPt-Based Catalysts of Total Oxidation of Methane: In Situ EXAFS Study. Catalysts. 2021; 11(12):1446. https://doi.org/10.3390/catal11121446
Chicago/Turabian StyleSaraev, Andrey A., Svetlana A. Yashnik, Evgeny Yu. Gerasimov, Anna M. Kremneva, Zakhar S. Vinokurov, and Vasily V. Kaichev. 2021. "Atomic Structure of Pd-, Pt-, and PdPt-Based Catalysts of Total Oxidation of Methane: In Situ EXAFS Study" Catalysts 11, no. 12: 1446. https://doi.org/10.3390/catal11121446
APA StyleSaraev, A. A., Yashnik, S. A., Gerasimov, E. Y., Kremneva, A. M., Vinokurov, Z. S., & Kaichev, V. V. (2021). Atomic Structure of Pd-, Pt-, and PdPt-Based Catalysts of Total Oxidation of Methane: In Situ EXAFS Study. Catalysts, 11(12), 1446. https://doi.org/10.3390/catal11121446