Cytosine Palladium Complex Supported on Ordered Mesoporous Silica as Highly Efficient and Reusable Nanocatalyst for One-Pot Oxidative Esterification of Aldehydes
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of Pd-Cyt@SBA-15 Nanomaterial
2.2. One-Pot Oxidative Esterification of Aldehydes Catalyzed by Pd-Cyt@SBA-15 Nanocatalyst
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussein, K. Applications of nanotechnology to improve the performance of solar collectors—Recent advances and overview. Renew. Sustain. Energy Rev. 2016, 62, 767. [Google Scholar] [CrossRef]
- Sheldon, R.A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem. Eng. 2018, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Rothenberg, G. Catalysis—Concepts and Green Applications; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008. [Google Scholar]
- Lerebours, R.; Wolf, C. Chemoselective nucleophilic arylation and single-step oxidative esterification of aldehydes using siloxanes and a palladium−phosphinous acid as a reaction switch. J. Am. Chem. Soc. 2006, 128, 13052. [Google Scholar] [CrossRef] [PubMed]
- Murahashi, S.; Naota, T.; Ito, K.; Maeda, Y.; Taki, H. Ruthenium-Catalyzed Oxidative Transformation of Alcohols and Aldehydes to Esters and Lactones. J. Org. Chem. 1987, 52, 4319. [Google Scholar] [CrossRef]
- Tschaen, B.A.; Schmink, J.R.; Molander, G.A. Pd-catalyzed aldehyde to ester conversion: A hydrogen transfer approach. Org. Lett. 2013, 15, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Tan, Y.; Chen, X.; Yang, W.; Huang, C.; Li, J.; Ding, Y. Efficient Synthesis of Methyl Methacrylate by One Step Oxidative Esterification over Zn-Al-Mixed Oxides Supported Gold Nanocatalysts. Catalysts 2021, 11, 162. [Google Scholar] [CrossRef]
- Patel, A.; Patel, A. Nickel exchanged supported 12-tungstophosphoric acid: Synthesis, characterization and base free one-pot oxidative esterification of aldehyde and alcohol. RSC Adv. 2019, 9, 1460. [Google Scholar] [CrossRef] [Green Version]
- Kelly, C.B.; Mercadante, M.A.; Wiles, R.J.; Leadbeater, N.E. Oxidative Esterification of Aldehydes Using a Recyclable Oxoammonium Salt. Org. Lett. 2013, 15, 2222. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Yamaguchi, T.; Matsushita, K.; Iitsuka, C.; Miura, J.; Akaogi, T.; Ishida, H. Aerobic Oxidative Esterification of Aldehydes with Alcohols by Gold–Nickel Oxide Nanoparticle Catalysts with a Core–Shell Structure. ACS Catal. 2013, 3, 1845. [Google Scholar] [CrossRef]
- Lim, S.; Kwon, S.; Kim, N.; Na, K. Multifunctional Au/CeO2-Mg(OH)2 Catalyst for One-Pot Aerobic Oxidative Esterification of Aldehydes with Alcohols to Alkyl Esters. Nanomaterials 2021, 11, 1536. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.S.; Ying, X.; Wanping, B.; Fang, G.; Lee, Y. Immobilizing catalysts on porous materials. Mater. Today 2006, 9, 32. [Google Scholar] [CrossRef]
- Farnetti, E.; Monte, R.D.; Kašpar, J. Inorganic and Bio-Inorganic Chemistry; Vol. II—Homogeneous and Heterogeneous Catalysis; Eolss: Oxford, UK, 2009. [Google Scholar]
- Rajabi, F.; Zare Ebrahimi, A.; Rabiee, A.; Pineda, A.; Luque, R. Synthesis and Characterization of Novel Pyridine Periodic Mesoporous Organosilicas and Its Catalytic Activity in the Knoevenagel Condensation Reaction. Materials 2020, 13, 1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajabi, F.; Luque, R. Highly ordered mesoporous functionalized pyridinium protic ionic liquids framework as efficient system in esterification reactions for biofuels production. Mol. Catal. 2020, 498, 111238. [Google Scholar] [CrossRef]
- Rajabi, F.; Fayyaz, F.; Bandyopadhyay, R.; Ivars-Barcelo, F.; Puente-Santiago, A.R.; Luque, R. Cytosine Palladium Hybrid Complex Immobilized on SBA-15 as Efficient Heterogeneous Catalyst for the Aqueous Suzuki-Miyaura Coupling. ChemistrySelect 2018, 3, 6102. [Google Scholar] [CrossRef]
Entry | Pd-Cyt@SBA-15 (mmol) | Oxidant | T (°C) | T (h) | Yield (%) a |
---|---|---|---|---|---|
1 | - | H2O2 | 60 | 10 | 8 b |
2 | 0.002 | H2O2 | 60 | 10 | 48 |
3 | 0.002 | air | 60 | 10 | 30 |
4 | 0.002 | O2 | 60 | 10 | 45 |
5 | 0.002 | O2 | 50 | 10 | 45 |
6 | 0.003 | O2 | 50 | 10 | 68 |
7 | 0.004 | O2 | 50 | 10 | 92 |
8 | 0.005 | O2 | 50 | 10 | 98 |
9 | 0.005 | O2 | 50 | 6 | 98 |
10 | 0.005 | O2 | 50 | 5 | 98 |
11 | 0.005 | O2 | 50 | 4 | 89 |
12 | 0.005 | O2 | 40 | 6 | 80 |
Entry | Aldehyde | ROH | Ester Product | Yield (%) b |
---|---|---|---|---|
1 | MeOH | 98 | ||
2 | MeOH | 94 | ||
3 | MeOH | 95 | ||
4 | MeOH | 96 | ||
5 | MeOH | 92 | ||
6 | MeOH | 88 | ||
7 | EtOH | 92 | ||
8 | PrOH | 93 | ||
9 | MeOH | 90 | ||
10 | EtOH | 94 | ||
11 | iPrOH | 92 | ||
12 | MeOH | 90 | ||
13 | EtOH | 92 | ||
14 | iPrOH | 90 | ||
15 | MeOH | 94 | ||
16 | EtOH | 95 | ||
17 | EtOH | 91 | ||
18 | MeOH | 90 | ||
19 | EtOH | 92 |
Reference | Reaction Conditions | Reuse | Yield (%) |
---|---|---|---|
This study | Aldehyde (5 mmol), methanol (3 mL), Pd-Cyt@SBA-15 (14 mg, 0.005 mmol Pd), 50 °C, O2 (filled balloon), 5 h. | 10 | 98 |
[7] | Aldehyde/MeOH (1/23), Au25/Zn2Al-400(0.05 g), O2(3 atm) at 80 °C, 2 h. | - | 45.2 |
[8] | Aldehyde (10 mmol), H2O2 (30 mmol), methanol (5 mL), Ni-TPA/ZrO2 (10 mg), (80 °C), 6 h. | 3 | 63 |
[9] | aldehyde (5 mmol), pyridine (63.75 mmol), HFIP (15 mmol), oxoammonium tetrafluoroborate salt (12.5 mmol), RT, 12 h. | 1 | 94 |
[10] | Aldehyde (containing 50 ppm hydroquinone inhibitor, 15 mmol), AuNiOx/SiO2-Al2O3-MgO (Au: 0.1 mol %) in alcohol (10 mL), O2 (3 MPa) at 80 °C, 1 h. | - | 61 |
[11] | 72.5 mmol aldehyde, aldehyde/MeOH (1/5), Au/CeO2-Mg(OH)2 (3 g), O2(9 bar) at 80 °C, 1 h. | 8 | 59.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajabi, F.; Chia, C.H.; Sillanpää, M.; Voskressensky, L.G.; Luque, R. Cytosine Palladium Complex Supported on Ordered Mesoporous Silica as Highly Efficient and Reusable Nanocatalyst for One-Pot Oxidative Esterification of Aldehydes. Catalysts 2021, 11, 1482. https://doi.org/10.3390/catal11121482
Rajabi F, Chia CH, Sillanpää M, Voskressensky LG, Luque R. Cytosine Palladium Complex Supported on Ordered Mesoporous Silica as Highly Efficient and Reusable Nanocatalyst for One-Pot Oxidative Esterification of Aldehydes. Catalysts. 2021; 11(12):1482. https://doi.org/10.3390/catal11121482
Chicago/Turabian StyleRajabi, Fatemeh, Chin Hua Chia, Mika Sillanpää, Leonid G. Voskressensky, and Rafael Luque. 2021. "Cytosine Palladium Complex Supported on Ordered Mesoporous Silica as Highly Efficient and Reusable Nanocatalyst for One-Pot Oxidative Esterification of Aldehydes" Catalysts 11, no. 12: 1482. https://doi.org/10.3390/catal11121482
APA StyleRajabi, F., Chia, C. H., Sillanpää, M., Voskressensky, L. G., & Luque, R. (2021). Cytosine Palladium Complex Supported on Ordered Mesoporous Silica as Highly Efficient and Reusable Nanocatalyst for One-Pot Oxidative Esterification of Aldehydes. Catalysts, 11(12), 1482. https://doi.org/10.3390/catal11121482