Engineered Stable 5-Hydroxymethylfurfural Oxidase (HMFO) from 8BxHMFO Variant of Methylovorus sp. MP688 through B-Factor Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Potential Mutation Site Prediction
2.2. Variant Screening
2.3. Catalytic Performance of Engineered HMFO
2.4. Stability Improvement Mechanism Analysis
3. Materials and Method
3.1. In Silico Simulation
3.2. Saturation Mutagenesis Procedure
3.3. Variation Screening of Mutation Libraries
3.4. HMFO Expression and Purification
3.5. Enzyme Kinetics
3.6. General Procedure for the HMFO Enzymatic Oxidation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kamm, B. Production of Platform Chemicals and Synthesis Gas from Biomass. Angew. Chem. Int. Ed. 2007, 46, 5056–5058. [Google Scholar] [CrossRef]
- Hadi, G.M.; Nariman, N.; Boorboor, A.F.; Elaheh, K.; Seeram, R. Mechanistic aspects of poly(ethylene terephthalate) recycling-toward enabling high quality sustainability decisions in waste management. Environ. Sci. Pollut. Res. 2021, 28, 43074–43101. [Google Scholar]
- Papageorgiou, G.Z.; Tsanaktsis, V.; Bikiaris, D.N. Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: Thermal behavior comparison with PET and PEN. Phys. Chem. Chem. Phys. 2014, 16, 7946–7958. [Google Scholar] [CrossRef]
- Jong, E.D.; Dam, M.A.; Sipos, L.; Gruter, G.J.M. Furandicarboxylic acid (FDCA), a versatile building block for a very interesting class of polyesters. In Biobased Monomers, Polymers and Materials; Smith, P.B., Gross, R., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2013; pp. 1–13. [Google Scholar]
- Werpy, T.; Petersen, G.; Aden, A.; Bozell, J.; Holladay, J. Top Value Added Chemicals from Biomass: Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, USA, 2004.
- Mengal, P.; Wubbolts, M.; Zika, E.; Ruiz, A.; Brigitta, D.; Pieniadz, A.; Black, S. Bio-based Industries Joint Undertaking: The catalyst for sustainable bio-based economic growth in Europe. N. Biotechnol. 2018, 40, 31–39. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Zhu, B.; Zhou, Z.; Zhang, J. 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: Catalysts, processes and reaction mechanism. J. Energy Chem. 2020, 54, 528–554. [Google Scholar] [CrossRef]
- Dmitrii, G.; Ekaterina, P.; Ekaterina, K.; Carabineiro, S.A.; Marta, S.; Alberto, V.; Laura, P.; Nina, B.; Vicente, C.C.; Alexey, P. Oxidation of 5-Hydroxymethylfurfural on Supported Ag, Au, Pd and Bimetallic Pd-Au Catalysts: Effect of the Support. Catalysts 2021, 11, 115. [Google Scholar]
- Siankevich, S.; Savoglidis, G.; Fei, Z.; Laurenczy, G.; Alexander, D.; Yan, N.; Dyson, P.J. A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions. J. Catal. 2014, 315, 67–74. [Google Scholar] [CrossRef]
- Koopman, F.; Wierckx, N.; de Winde, J.; Ruijssenaars, H. Identification and characterization of the furfural and 5-(hydroxymethyl) furfural degradation pathways of Cupriavidus basilensis HMF14. Proc. Natl. Acad. Sci. USA 2010, 107, 4919–4924. [Google Scholar] [CrossRef] [Green Version]
- Viambres, M.; Espada, M.; Martínez, A.T.; Serrano, A. Screening and Evaluation of New Hydroxymethylfurfural Oxidases for Furandicarboxylic Acid Production. Appl. Environ. Microbiol. 2020, 86, e00842-20. [Google Scholar]
- Dijkman, W.P.; Fraaije, M.W. Discovery and Characterization of a 5-Hydroxymethylfurfural Oxidase from Methylovorus sp. Strain MP688. Appl. Environ. Microbiol. 2014, 80, 1082–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.; Maqueo, A.O.; Wijma, H.J.; Fraaije, M.W. Creating a more robust 5-hydroxymethylfurfural oxidase by combining computational predictions with a novel effective library design. Biotechnol. Biofuels 2018, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Cline, J.; Braman, J.C.; Hogrefe, H.H. PCR Fidelity of Pfu DNA Polymerase and Other Thermostable DNA Polymerases. Nucleic Acids Res. 1996, 24, 3546–3551. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Naismith, J.H. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 2009, 8, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Liu, Q.; Qu, G.; Feng, Y.; Reetz, M.T. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem. Rev. 2019, 119, 1626–1665. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xie, D.F.; Feng, Y. Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations. Biochem. Biophys. Res. Commun. 2016, 483, 397–402. [Google Scholar] [CrossRef]
- Reetz, M.T.; Carballeira, J.D.; Vogel, A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew. Chem. 2010, 118, 7909–7915. [Google Scholar] [CrossRef]
- Dijkman, W.P.; Binda, C.; Fraaije, M.W.; Mattevi, A. Structure-Based Enzyme Tailoring of 5-Hydroxymethylfurfural Oxidase. ACS Catal. 2015, 5, 1833–1839. [Google Scholar] [CrossRef]
- Pinkernell, U.; Lüke, H.J.; Karst, U. Selective Photometric Determination of Peroxycarboxylic Acids in the Presence of Hydrogen Peroxide. Analyst 1997, 122, 567–571. [Google Scholar] [CrossRef]
- Tang, B.; Wang, Y.; Liang, H.; Chen, Z.; He, X.; Shen, H. Studies on the oxidation reaction of tyrosine (Tyr) with H2O2 catalyzed by horseradish peroxidase (HRP) in alcohol-water medium by spectrofluorimetry and differential spectrophotometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 63, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, S.; Murthy, M.R.N. Protein thermal stability: Insights from atomic displacement parameters (B values). Protein Eng. 2000, 13, 9–13. [Google Scholar] [CrossRef]
- Meng, S.; An, R.; Li, Z.; Schwaneberg, U.; Ji, Y.; Davari, M.D.; Wang, F.; Wang, M.; Qin, M.; Nie, K.; et al. Tunnel engineering for modulating the substrate preference in cytochrome P450BsβHI. Bioresour. Bioprocess. 2021, 8, 26. [Google Scholar] [CrossRef]
- Wijma, H.J.; Floor, R.J.; Janssen, D.B. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr. Opin. Struct. 2013, 23, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Zhang, B.; Zhu, X.; Hamaker, B.; Zhang, H.; Campanella, O. A molecular dynamics simulation study on the conformational stability of amylose-linoleic acid complex in water. Carbohydr. Polym. 2018, 196, 56–65. [Google Scholar]
- Hess, B.; Kutzner, C.; David, V.D.S.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, H.; Wang, M.; Deng, L.; Liu, L.; Schwaneberg, U.; Tan, T.; Wang, F.; Nie, K. Sugar-Improved Enzymatic Synthesis of Biodiesel with Yarrowia lipolytica Lipase 2. Energy Fuels 2017, 31, 6248–6256. [Google Scholar] [CrossRef]
- Ueda, E.K.M.; Gout, P.W.; Morganti, L. Current and prospective applications of metal ion-protein binding. J. Chromatogr. A 2003, 988, 1–23. [Google Scholar] [CrossRef]
HMFO | 25 °C | 30 °C | 35 °C | 40 °C |
---|---|---|---|---|
8BxHMFO | 85.2% | 87.6% | 83.2% | 71.8% |
Q319K | 87.3% | 98.1% | 98.2% | 86.9% |
N44G | 82.7% | 93.6% | 95.2% | 87.2% |
N44G-Q319K | 85.2% | 91.1% | 91.5% | 85.4% |
HMFO | kcat (s−1) | Km (mM) | kcat/Km (s−1 mM−1) |
---|---|---|---|
8BxHMFO | 28.39 | 1.44 | 19.72 |
Q319K | 30.23 | 2.62 | 11.54 |
N44G | 25.30 | 2.49 | 10.16 |
N44G-Q319K | 25.36 | 3.62 | 7.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Lu, D.; Jin, S.; Lu, J.; Wang, F.; Liu, L.; Nie, K. Engineered Stable 5-Hydroxymethylfurfural Oxidase (HMFO) from 8BxHMFO Variant of Methylovorus sp. MP688 through B-Factor Analysis. Catalysts 2021, 11, 1503. https://doi.org/10.3390/catal11121503
Wu Q, Lu D, Jin S, Lu J, Wang F, Liu L, Nie K. Engineered Stable 5-Hydroxymethylfurfural Oxidase (HMFO) from 8BxHMFO Variant of Methylovorus sp. MP688 through B-Factor Analysis. Catalysts. 2021; 11(12):1503. https://doi.org/10.3390/catal11121503
Chicago/Turabian StyleWu, Qiuyang, Dong Lu, Shuming Jin, Jie Lu, Fang Wang, Luo Liu, and Kaili Nie. 2021. "Engineered Stable 5-Hydroxymethylfurfural Oxidase (HMFO) from 8BxHMFO Variant of Methylovorus sp. MP688 through B-Factor Analysis" Catalysts 11, no. 12: 1503. https://doi.org/10.3390/catal11121503
APA StyleWu, Q., Lu, D., Jin, S., Lu, J., Wang, F., Liu, L., & Nie, K. (2021). Engineered Stable 5-Hydroxymethylfurfural Oxidase (HMFO) from 8BxHMFO Variant of Methylovorus sp. MP688 through B-Factor Analysis. Catalysts, 11(12), 1503. https://doi.org/10.3390/catal11121503