Review on Alternative Route to Acrolein through Oxidative Coupling of Alcohols
Abstract
:1. Introduction
2. State of the Art and Review
2.1. Curent Route from Fossil Resources: Propylene
2.2. The New Route from Renewable Resources: Glycerol
2.3. The New Route from Mixed Alcohols: Oxidative Coupling of Alcohols
- Acid/base balance
- Mechanism
- Catalyst at equilibrium
- Reaction set-up and considerations for the Industrial plant
3. Life Cycle and Economic Analysis
- the single reactor option was a very good choice and should be preserved;
- a simple technology should be thought to minimize the capital cost, so this would exclude circulating fluid beds, for example;
- side products should be minimized to avoid a heavy downstream purification;
- an existing plant could be retrofitted or second hand equipment could be used.
4. Remaining Challenges and Conclusions
- equimolar methanol and ethanol feed;
- acrolein yield above 70 mol %—the analysis confirmed that 70% is a realistic target;
- single reactor, to minimize as much as possible the capital cost;
- 30% grants and subsidies on the capital cost, or a reduced capital cost with innovative technology.
- to improve the aldolization reaction, which is slower than oxidation;
- reduce the over-oxidation to CO2 and CO;
- lower the reaction temperature, while keeping it above 200 °C to satisfy the energy needs of the plant;
- evaluate the impact of the recirculation of unconverted aldehydes (formaldehyde and acetaldehyde) on the reaction kinetics and mechanism;
- develop single catalyst formulations, bulk or coated on inert support for better temperature control.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arntz, D.; Fischer, A.; Höpp, M.; Jacobi, S.; Sauer, J.; Ohara, T.; Sato, T.; Shimizu, N.; Schwind, H. Acrolein and methacrolein. Ullmanns Encycl. Ind. Chem. 2000. [Google Scholar] [CrossRef]
- Etzkorn, W.G. Acrolein and derivatives. Kirk-Othmer Encycl. Chem. Technol. 2000. [Google Scholar] [CrossRef]
- François, Y. Acroléine, Techniques de l’Ingénieur. 1995. Réf: J6100 v1. Available online: https://www.techniques-ingenieur.fr/base-documentaire/archives-th12/archives-operations-unitaires-genie-de-la-reaction-chimique-tiajb/archive-1/acroleine-j6100/ (accessed on 15 January 2021).
- Schaal, G. Acroléine, Procédé PCUK/NSKK, Techniques de l’Ingénieur. 1982. Réf: J6020-J403 v1. Available online: https://www.techniques-ingenieur.fr/base-documentaire/archives-th12/archives-operations-unitaires-genie-de-la-reaction-chimique-tiajb/archive-1/acroleine-procede-pcuk-nskk-j6020-j403/ (accessed on 15 January 2021).
- Liu, L.; Ye, X.P.; Bozell, J.J. A comparative review of petroleum-based and bio-based acrolein production. ChemSusChem 2012, 5, 1162–1180. [Google Scholar] [CrossRef]
- Mahboub, M.J.D.; Patience, G.S. 1 Conversion of Glycerol to Acrylic Acid; De Gruyter: Berlin, Germany, 2020; pp. 1–30. ISBN 978-3-11-064685-6. [Google Scholar]
- Dubois, J.-L.; Kaliaguine, S. 2 Alternative Routes to More Sustainable Acrylonitrile: Biosourced Acrylonitrile; De Gruyter: Berlin, Germany, 2020; pp. 31–62. ISBN 978-3-11-064685-6. [Google Scholar]
- Díaz, E.; Sad, M.E.; Iglesia, E. Homogeneous oxidation reactions of propanediols at low temperatures. ChemSusChem 2010, 3, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Ai, M. Formation of acrylaldehyde by vapor-phase aldol condensation II. Phosphate catalysts. Bull. Chem. Soc. Jpn. 1991, 64, 1346–1350. [Google Scholar] [CrossRef] [Green Version]
- Ai, M. Formation of acrylaldehyde by vapor-phase aldol condensation I. Basic oxide catalysts. Bull. Chem. Soc. Jpn. 1991, 64, 1342–1345. [Google Scholar] [CrossRef]
- Dumitriu, E.; Hulea, V.; Fechete, I.; Auroux, A.; Lacaze, J.-F.; Guimon, C. The aldol condensation of lower aldehydes over MFI zeolites with different acidic properties. Microporous Mesoporous Mater. 2001, 43, 341–359. [Google Scholar] [CrossRef]
- Dumitriu, E.; Hulea, V.; Bilba, N.; Carja, G.; Azzouz, A. Synthesis of acrolein by vapor phase condensation of formaldehyde and acetaldehyde over oxides loaded zeolites. J. Mol. Catal. 1993, 79, 175–185. [Google Scholar] [CrossRef]
- Dumitriu, E.; Bilba, N.; Lupascu, M.; Azzouz, A.; Hulea, V.; Cirje, G.; Nibou, D. Vapor-phase condensation of formaldehyde and acetaldehyde into acrolein over zeolites. J. Catal. 1994, 147, 133–139. [Google Scholar] [CrossRef]
- Dumitriu, E.; Hulea, V.; Chelaru, C.; Catrinescu, C.; Tichit, D.; Durand, R. Influence of the acid-base properties of solid catalysts derived from hydrotalcite-like compounds on the condensation of formaldehyde and acetaldehyde. Appl. Catal. Gen. 1999, 178, 145–157. [Google Scholar] [CrossRef]
- Cobzaru, C.; Oprea, S.; Dumitriu, E.; Hulea, V. Gas phase aldol condensation of lower aldehydes over clinoptilolite rich natural zeolites. Appl. Catal. Gen. 2008, 351, 253–258. [Google Scholar] [CrossRef]
- Ungureanu, A.; Royer, S.; Hoang, T.V.; Trong On, D.; Dumitriu, E.; Kaliaguine, S. Aldol condensation of aldehydes over semicrystalline zeolitic-mesoporous UL-ZSM-5. Microporous Mesoporous Mater. 2005, 84, 283–296. [Google Scholar] [CrossRef]
- Reuss, G.; Disteldorf, W.; Gamer, A.O.; Hilt, A. Formaldehyde. In Ullmann’s Encyclopedia of Industrial Chemistry; 2000; ISBN 978-3-527-30673-2. [Google Scholar] [CrossRef]
- Franz, A.W.; Kronemayer, H.; Pfeiffer, D.; Pilz, R.D.; Reuss, G.; Disteldorf, W.; Gamer, A.O.; Hilt, A. Formaldehyde. In Ullmann’s Encyclopedia of Industrial Chemistry; 2016; pp. 1–34. ISBN 978-3-527-30673-2. [Google Scholar]
- Gerberich, H.R.; Seaman, G.C. Formaldehyde. In Kirk-Othmer Encyclopedia of Chemical Technology; 2013; pp. 1–22. ISBN 978-0-471-23896-6. [Google Scholar] [CrossRef]
- Eckert, M.; Fleischmann, G.; Jira, R.; Bolt, H.M.; Golka, K. Acetaldehyde. In Ullmann’s Encyclopedia of Industrial Chemistry; 2006; ISBN 978-3-527-30673-2. [Google Scholar] [CrossRef]
- Hagemeyer, H.J. Acetaldehyde. In Kirk-Othmer Encyclopedia of Chemical Technology; 2002; ISBN 978-0-471-23896-6. [Google Scholar] [CrossRef]
- Oliveira, P.G.P.; Eon, J.G.; Moraes, C.; Appel, N.G. Catalisadores Promissores Para a Oxidação Seletiva do Etanol. Informativo do INT, Rio de Janeiro, V17, N° 34, Jul/dez. 1985, 25–30. Available online: https://biblat.unam.mx/es/revista/informativo-do-int/articulo/catalisadores-promissores-para-a-oxidacao-seletiva-do-etanol (accessed on 15 January 2021).
- Dubois, J.-L.; Capron, M.; Dumeignil, F. Method for Directly Synthesizing Unsaturated Aldehydes from Alcohol Mixtures. U.S. Patent 9,365,478; priority, 29 October 2012. [Google Scholar]
- Dubois, J.-L. Process for Direct Synthesis of (Meth) Acrolein from Ethers And/Or Acetals. U.S. Patent 9,714,205; priority, 4 April 2014. [Google Scholar]
- Salt Operated Reactors Acrolein. Available online: https://www.man-es.com/docs/default-source/oil-and-gas-process-industry-documents/salt-operated-reactors_acrolein.pdf?sfvrsn=b5af7e88_10 (accessed on 15 January 2021).
- Neher, A.; Haas, T.; Arntz, D.; Klenk, H.; Girke, W. Process for the Production of Acrolein. U.S. Patent 5,387,720 A; priority, 14 November 1992. [Google Scholar]
- Dubois, J.-L.; Duquenne, C.; Holderich, W. Process for Dehydrating Glycerol to Acrolein. U.S. Patent 7,396,962; priority, 15 February 2005. [Google Scholar]
- Xu, B.-Q.; Chai, S.-H.; Takahashi, T.; Shima, M.; Sato, S.; Takahashi, R. Process for Dehydration of Polyhydric Alcohols. W.O. Patent 2007/058,221; priority, 15 November 2005. [Google Scholar]
- Okumura, K.; Kobayashi, Y.; Hiraoka, R.; Dubois, J.-L. Catalyst for Preparing Acrolein and Acrylic Acid by Dehydration of Glycerin, and Its Production Process. U.S. Patent 2014/206,527 A1; priority, 29 July 2011. [Google Scholar]
- Dalil, M.; Carnevali, D.; Edake, M.; Auroux, A.; Dubois, J.-L.; Patience, G.S. Gas phase dehydration of glycerol to acrolein: Coke on WO3/TiO2 Reduces by-products. J. Mol. Catal. Chem. 2016, 421, 146–155. [Google Scholar] [CrossRef]
- Dalil, M.; Edake, M.; Sudeau, C.; Dubois, J.-L.; Patience, G.S. Coke promoters improve acrolein selectivity in the gas-phase dehydration of glycerol to acrolein. Appl. Catal. Gen. 2016, 522, 80–89. [Google Scholar] [CrossRef]
- ARIA Acroléine. Available online: https://www.aria.developpement-durable.gouv.fr/?s=acrolein&fwp_recherche=acrolein (accessed on 24 December 2020).
- Devaux, J.-F.; Dubois, J.-L. Process for Manufacturing Acrolein/Acrylic Acid. U.S. Patent 9,296,676; priority, 28 January 2011. [Google Scholar]
- Homepage of CRI-Carbon Recycling International. Available online: https://www.carbonrecycling.is/ (accessed on 24 December 2020).
- homepage of Gas Technologies LLC. Available online: https://gastechno.com/ (accessed on 24 December 2020).
- Borowiec, A.; Devaux, J.F.; Dubois, J.L.; Jouenne, L.; Bigan, M.; Simon, P.; Trentesaux, M.; Faye, J.; Capron, M.; Dumeignil, F. An acrolein production route from ethanol and methanol mixtures over femo-based catalysts. Green Chem. 2017, 19, 2666–2674. [Google Scholar] [CrossRef]
- Borowiec, A.; Lilić, A.; Morin, J.-C.; Devaux, J.-F.; Dubois, J.-L.; Bennici, S.; Auroux, A.; Capron, M.; Dumeignil, F. Acrolein production from methanol and ethanol mixtures over La- and Ce-doped femo catalysts. Appl. Catal. B Environ. 2018, 237, 149–157. [Google Scholar] [CrossRef]
- Lilić, A.; Wei, T.; Bennici, S.; Devaux, J.-F.; Dubois, J.-L.; Auroux, A. A comparative study of basic, amphoteric, and acidic catalysts in the oxidative coupling of methanol and ethanol for acrolein production. ChemSusChem 2017, 10, 3459–3472. [Google Scholar] [CrossRef]
- Lilić, A.; Bennici, S.; Devaux, J.-F.; Dubois, J.-L.; Auroux, A. Influence of catalyst acid/base properties in acrolein production by oxidative coupling of ethanol and methanol. ChemSusChem 2017, 10, 1916–1930. [Google Scholar] [CrossRef] [PubMed]
- Folliard, V.; Postole, G.; Devaux, J.-F.; Dubois, J.-L.; Marra, L.; Auroux, A. Oxidative coupling of a mixture of bio-alcohols to produce a more sustainable acrolein: An in depth look in the mechanism implying aldehydes co-adsorption and acid/base sites. Appl. Catal. B Environ. 2020, 268, 118421. [Google Scholar] [CrossRef]
- Folliard, V.; Postole, G.; Marra, L.; Dubois, J.-L.; Auroux, A. Synthesis of acrolein by oxidative coupling of alcohols over spinel catalysts: Microcalorimetric and spectroscopic approaches. Catal. Sci. Technol. 2020, 10, 1889–1901. [Google Scholar] [CrossRef]
- Folliard, V.; Postole, G.; Marra, L.; Dubois, J.-L.; Auroux, A. Sustainable acrolein production from bio-alcohols on spinel catalysts: Influence of magnesium substitution by various transition metals (Fe, Zn, Co, Cu, Mn). Appl. Catal. A Gen. 2020, 608, 117871. [Google Scholar] [CrossRef]
- Brooks, M.R.; Crowl, D.A. Flammability envelopes for methanol, ethanol, acetonitrile and toluene. J. Loss Prev. Process Ind. 2007, 20, 144–150. [Google Scholar] [CrossRef]
- Zabetakis, M.G. Flammability Characteristics of Combustible Gases and Vapors; Bureau of Mines: Pittsburgh, PA, USA, 1964. [Google Scholar]
- Dubois, J.-L. Main industrial processes and future trends in heterogeneous catalysis—Acrolein oxidation to acrylic acid, preparation of industrial catalysts. In Metal Oxides in Heterogeneous Catalysis; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-12-811632-6. [Google Scholar]
- Malinowski, S.; Basinski, S. Kinetics of aldolic reactions in the gaseous phase on solid catalysts of basic character. J. Catal. 1963, 2, 203–207. [Google Scholar] [CrossRef]
- Palion, W.J.; Malinowski, S. Gas phase reactions of acetaldehyde and formaldehyde in the presence of mixed solid catlysts containing silica and alumina. React. Kinet. Catal. Lett. 1974, 1, 461–465. [Google Scholar] [CrossRef]
- Azzouz, A.; Messad, D.; Nistor, D.; Catrinescu, C.; Zvolinschi, A.; Asaftei, S. Vapor phase aldol condensation over fully ion-exchanged montmorillonite-rich catalysts. Appl. Catal. Gen. 2003, 241. [Google Scholar] [CrossRef]
- Malinowski, S.T.; Palion, W.J. Gas phase reactions of acetaldehyde and formaldehyde in the presence of solid catalysts containing fluorine. React. Kinet. Catal. Lett. 1974, 1, 73–78. [Google Scholar] [CrossRef]
- Young, Z.D.; Hanspal, S.; Davis, R.J. Aldol condensation of acetaldehyde over titania, hydroxyapatite, and magnesia. ACS Catal. 2016, 6, 3193–3202. [Google Scholar] [CrossRef]
- Ji, W.; Chen, Y.; Kung, H.H. Vapor phase aldol condensation of acetaldehyde on metal oxide catalysts. Appl. Catal. Gen. 1997, 161, 93–104. [Google Scholar] [CrossRef]
- Ordomsky, V.V.; Sushkevich, V.L.; Ivanova, I.I. Study of acetaldehyde condensation chemistry over magnesia and zirconia supported on silica. J. Mol. Catal. Chem. 2010, 333, 85–93. [Google Scholar] [CrossRef]
- Sun, D.; Moriya, S.; Yamada, Y.; Sato, S. Vapor-phase self-aldol condensation of butanal over Ag-modified TiO2. Appl. Catal. Gen. 2016, 524, 8–16. [Google Scholar] [CrossRef]
- Shen, W.; Tompsett, G.A.; Xing, R.; Curtis Conner, W.; Huber, G.W. Vapor phase butanal self-condensation over unsupported and supported alkaline earth metal oxides. J. Catal. 2012, 286, 248–259. [Google Scholar] [CrossRef]
- List, B. Amine-catalyzed Aldol Reactions. In Modern Aldol Reactions; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2004; pp. 161–200. ISBN 978-3-527-61956-6. [Google Scholar]
- Tsagkari, M.; Couturier, J.-L.; Kokossis, A.; Dubois, J.-L. Early-stage capital cost estimation of biorefinery processes: A comparative study of heuristic techniques. ChemSusChem 2016, 9, 2284–2297. [Google Scholar] [CrossRef]
- Petley, G.J. A Method for Estimating the Capital Cost of Chemical Process Plants: Fuzzy Matching; Loughborough University: Loughborough, UK, 1997. [Google Scholar]
- Lange, J.-P. Fuels and chemicals manufacturing; guidelines for understanding and minimizing the production costs. Cattech 2001, 5, 82–95. [Google Scholar] [CrossRef]
- CEPCI updates: February (Prelim.) and January (Final)—Chemical engineering|page 1. Chem. Eng. 2020. Available online: https://www.chemengonline.com/2020-cepci-updates-february-prelim-and-january-final/ (accessed on 15 January 2021).
- Vatavuk, W.M. Updating the CE plant cost index. Chem. Eng. 2002, 109, 62–70. [Google Scholar]
- Max, S.P.; Klaus, D.T.; Ronald, E.W. Plant Design and Economics for Chemical Engineers; McGraw-Hill Companies: New York, NY, USA, 2003. [Google Scholar]
- Acrylic Acid—Chemical Production and Investment Cost|IHS Markit. Available online: https://ihsmarkit.com/products/chemical-technology-pep-acrylic-acid-2015.html (accessed on 12 January 2021).
- Acrylic Acid and Esters (2019 Program)|NexantECA. Available online: https://www.nexanteca.com/reports/acrylic-acid-and-esters-2019-program (accessed on 12 January 2021).
- Log in|Intratec. Available online: https://www.intratec.us/login (accessed on 12 January 2021).
- Acrylic Acid Production via Propylene Oxidation—By Intratec Solutions—Chemical Engineering|Page 1. Available online: https://www.chemengonline.com/acrylic-acid-production-via-propylene-oxidation-intratec-solutions/ (accessed on 12 January 2021).
- Nippon Shokubai Breaks Ground for New Acrylic Acid Plant-Chemical Engineering. Available online: https://www.chemengonline.com/nippon-shokubai-breaks-ground-for-new-acrylic-acid-plant/?printmode=1 (accessed on 12 January 2021).
- Nippon Shokubai. Available online: https://www.shokubai.co.jp/en/news/news0180.html (accessed on 12 January 2021).
- Ikeda, M. Nippon Shokubai Announces Expansion of Acrylic Acid Production Capacity at Himeji Plant 2008. Available online: https://www.shokubai.co.jp/en/news/file.cgi?file=file1_0017.pdf (accessed on 15 January 2021).
- American Acryl Invests $150MM for Acrylic Acid. Available online: https://www.icis.com/explore/resources/news/1998/03/23/86785/american-acryl-invests-150mm-for-acrylic-acid (accessed on 12 January 2021).
- BASF Awards Contract for Acrylic Acid Plant. Available online: https://www.icis.com/explore/resources/news/1998/02/02/86236/basf-awards-contract-for-acrylic-acid-plant (accessed on 12 January 2021).
- Ford, B. Novus, Arkema Start up MMP Plant in Beaumont, Texas. Available online: https://www.icis.com/explore/resources/news/2005/06/02/682396/novus-arkema-start-up-mmp-plant-in-beaumont-texas (accessed on 12 January 2021).
- Novus and Atofina to Build MMP Plant. Available online: https://www.glassonweb.com/news/novus-and-atofina-build-mmp-plant (accessed on 12 January 2021).
- 18R-97: Cost estimate classification system-as applied in engineering, procurement, and construction for the process industries. Available online: https://www.costengineering.eu/Downloads/articles/AACE_CLASSIFICATION_SYSTEM.pdf (accessed on 7 August 2020).
- Import Data and Price of ACROLEIN|Zauba. Available online: https://www.zauba.com/import-ACROLEIN-hs-code.html (accessed on 12 January 2021).
- Crude Oil (Petroleum)-Monthly Price-Commodity Prices-Price Charts, Data, and News-IndexMundi. Available online: https://www.indexmundi.com/commodities/?commodity=crude-oil (accessed on 12 January 2021).
- Sugar-Monthly Price-Commodity Prices-Price Charts, Data, and News-IndexMundi. Available online: https://www.indexmundi.com/commodities/?commodity=sugar&months=180 (accessed on 12 January 2021).
- Ethanol PRICE Today|Ethanol Spot Price Chart|Live Price of Ethanol per Ounce|Markets Insider. Available online: https://markets.businessinsider.com/commodities/ethanol-price (accessed on 12 January 2021).
- de Leon Izeppi, G.A.; Dubois, J.-L.; Balle, A.; Soutelo-Maria, A. Economic risk assessment using monte carlo simulation for the production of azelaic acid and pelargonic acid from vegetable oils. Ind. Crop. Prod. 2020, 150, 112411. [Google Scholar] [CrossRef]
- Green, D.W.; Southard, M.Z. Section 9—process economics. In Perry’s Chemical Engineers’ Handbook; McGraw-Hill Education: New York, NY, USA, 2019; pp. 9–53. [Google Scholar]
70% Yield | Acrolein | Methanol | Ethanol |
---|---|---|---|
Big (tons/year) | 50,000 | 40,825 | 58,700 |
Small (tons/year) | 10,000 | 8165 | 11,740 |
80% Yield | |||
Big (tons/year) | 50,000 | 35,720 | 51,360 |
Small (tons/year) | 10,000 | 7144 | 10,272 |
90% Yield | |||
Big (tons/year) | 50,000 | 31,752 | 45,655 |
Small (tons/year) | 10,000 | 6350 | 9131 |
Company | Capacity (ktons/year) | Investment (M US$) | Year | Project Type | Product |
---|---|---|---|---|---|
Nippon Shokubai [66] | 100 | 200 | 2019 | Brownfield | AA |
Nippon Shokubai [67] | 100 | 195 | 2016 | Greenfield | AA |
Nippon Shokubai [68] | 80 | 138 | 2011 | Brownfield | AA |
American Acrylic [69] | 120 | 150 | 1999 | Greenfield | AA |
BASF [70] | 160 | 200 | 1998 | Greenfield | AA |
Arkema [71,72] | 36 | 65 | 2003 | Greenfield | A |
Ethanol | Methanol | Crude oil | Propylene | Acrolein | |
---|---|---|---|---|---|
Ethanol | 1 | ||||
Methanol | 0.48 | 1 | |||
Crude oil | 0.5 | 0.45 | 1 | ||
Propylene | 0.45 | 0.45 | 0.5 | 1 | |
Acrolein | 0.45 | 0.5 | 0.45 | 0.5 | 1 |
Ethanol | Methanol | Crude Oil | Propylene | Acrolein | |
---|---|---|---|---|---|
Ethanol | 1 | ||||
Methanol | 0.7 | 1 | |||
Crude oil | 0.5 | 0.45 | 1 | ||
Propylene | 0.45 | 0.45 | 0.5 | 1 | |
Acrolein | 0.2 | 0.2 | 0.45 | 0.5 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folliard, V.; Tommaso, J.d.; Dubois, J.-L. Review on Alternative Route to Acrolein through Oxidative Coupling of Alcohols. Catalysts 2021, 11, 229. https://doi.org/10.3390/catal11020229
Folliard V, Tommaso Jd, Dubois J-L. Review on Alternative Route to Acrolein through Oxidative Coupling of Alcohols. Catalysts. 2021; 11(2):229. https://doi.org/10.3390/catal11020229
Chicago/Turabian StyleFolliard, Vincent, Jacopo de Tommaso, and Jean-Luc Dubois. 2021. "Review on Alternative Route to Acrolein through Oxidative Coupling of Alcohols" Catalysts 11, no. 2: 229. https://doi.org/10.3390/catal11020229
APA StyleFolliard, V., Tommaso, J. d., & Dubois, J.-L. (2021). Review on Alternative Route to Acrolein through Oxidative Coupling of Alcohols. Catalysts, 11(2), 229. https://doi.org/10.3390/catal11020229