Advances in Homogeneous Photocatalytic Organic Synthesis with Colloidal Quantum Dots
Abstract
:1. Introduction
2. Cadmium Containing QDs
2.1. CdS QDs
2.2. CdSe QDs
2.3. Colloidal Core/Shell QDs
2.3.1. ZnSe/CdS QDs
2.3.2. CdSe/CdS QDs
3. Cadmium-Free QDs
3.1. Colloidal Core/Shell QDs
3.1.1. InP/ZnS QDs
3.1.2. CuInS2/ ZnS QDs
3.2. Halide Perovskite QDs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsui, J.K.; Lang, S.B.; Heitz, D.R.; Molander, G.A. Photoredox-Mediated Routes to Radicals: The Value of Catalytic Radical Generation in Synthetic Methods Development. ACS Catal. 2017, 7, 2563–2575. [Google Scholar] [CrossRef] [PubMed]
- Romero, N.A.; Nicewicz, D.A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–10166. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Zhao, X.; Jiang, Z. Advances in the Synthesis of Imine-Containing Azaarene Derivatives via Photoredox Catalysis. ChemCatChem 2020, 12, 4471–4489. [Google Scholar] [CrossRef]
- Yu, X.Y.; Chen, J.R.; Xiao, W.J. Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chem. Rev. 2021, 121, 506–561. [Google Scholar] [CrossRef] [PubMed]
- Fukuzumi, S.; Ohkubo, K. Organic synthetic transformations using organic dyes as photoredox catalysts. Org. Biomol. Chem. 2014, 12, 6059–6071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gisbertz, S.; Pieber, B. Heterogeneous Photocatalysis in Organic Synthesis. ChemPhotoChem 2020, 4, 456–475. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.; Skillen, N.; Gunaratne, N.; Rooney, D.W.; Robertson, P.K.J. Removal of phthalates from aqueous solution by semiconductor photocatalysis: A review. J. Hazard. Mater. 2021, 402, 123461. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Vila, C.; Rueping, M. Visible-light mediated heterogeneous C–H functionalization: Oxidative multi-component reactions using a recyclable titanium dioxide (TiO2) catalyst. Green Chem. 2013, 15, 2056–2059. [Google Scholar] [CrossRef]
- Calcio Gaudino, E.; Carnaroglio, D.; Nunes, M.A.G.; Schmidt, L.; Flores, E.M.M.; Deiana, C.; Sakhno, Y.; Martra, G.; Cravotto, G. Fast TiO2-catalyzed direct amidation of neat carboxylic acids under mild dielectric heating. Catal. Sci. Technol. 2014, 4, 1395–1399. [Google Scholar] [CrossRef]
- Ma, D.; Liu, A.; Li, S.; Lu, C.; Chen, C. TiO2 photocatalysis for C–C bond formation. Catal. Sci. Technol. 2018, 8, 2030–2045. [Google Scholar] [CrossRef]
- Sánchez Martínez, D.; Martínez-de la Cruz, A.; López Cuéllar, E. Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent. Appl. Catal. A Gen. 2011, 398, 179–186. [Google Scholar] [CrossRef]
- Li, J.-Y.; Li, Y.-H.; Qi, M.-Y.; Lin, Q.; Tang, Z.-R.; Xu, Y.-J. Selective Organic Transformations over Cadmium Sulfide-Based Photocatalysts. ACS Catal. 2020, 10, 6262–6280. [Google Scholar] [CrossRef]
- Smith, A.M.; Nie, S. Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Acc. Chem. Res. 2010, 43, 190–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, Z.W.; Yang, L.; Wang, D.Y.; Pu, C.D.; Shen, Y.M.; Wu, C.D.; Peng, X.G. Visible-Light Photocatalytic Synthesis of Amines from Imines via Transfer Hydrogenation Using Quantum Dots as Catalysts. J. Org. Chem. 2018, 83, 11886–11895. [Google Scholar] [CrossRef] [PubMed]
- Berr, M.J.; Schweinberger, F.F.; Döblinger, M.; Sanwald, K.E.; Wolff, C.; Breimeier, J.; Crampton, A.S.; Ridge, C.J.; Tschurl, M.; Heiz, U.; et al. Size-Selected Subnanometer Cluster Catalysts on Semiconductor Nanocrystal Films for Atomic Scale Insight into Photocatalysis. Nano Lett. 2012, 12, 5903–5906. [Google Scholar] [CrossRef]
- Weiss, E.A. Designing the Surfaces of Semiconductor Quantum Dots for Colloidal Photocatalysis. ACS Energy Lett. 2017, 2, 1005–1013. [Google Scholar] [CrossRef]
- Yuan, Y.-J.; Chen, D.-Q.; Xiong, M.; Zhong, J.-S.; Wan, Z.-Y.; Zhou, Y.; Liu, S.; Yu, Z.-T.; Yang, L.-X.; Zou, Z.-G. Bandgap engineering of (AgIn)xZn2(1−x)S2 quantum dot photosensitizers for photocatalytic H2 generation. Appl. Catal. B Environ. 2017, 204, 58–66. [Google Scholar] [CrossRef]
- Wu, H.L.; Li, X.B.; Tung, C.H.; Wu, L.Z. Recent Advances in Sensitized Photocathodes: From Molecular Dyes to Semiconducting Quantum Dots. Adv. Sci. 2018, 5, 1700684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.-B.; Tung, C.-H.; Wu, L.-Z. Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2018, 2, 160–173. [Google Scholar] [CrossRef]
- Kodaimati, M.S.; McClelland, K.P.; He, C.; Lian, S.; Jiang, Y.; Zhang, Z.; Weiss, E.A. Viewpoint: Challenges in Colloidal Photocatalysis and Some Strategies for Addressing Them. Inorg. Chem. 2018, 57, 3659–3670. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Fan, X.B.; Wang, X.; Li, J.; Zhang, Q.; Xia, A.; Wei, S.; Wu, L.Z.; Zhou, Y.; Patzke, G.R. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat. Commun. 2018, 9, 4009. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.-J.; Torimoto, T.; Yoneyama, H. Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. J. Photoch. Photobiol. A 1998, 113, 93–97. [Google Scholar] [CrossRef]
- Lian, S.; Kodaimati, M.S.; Weiss, E.A. Photocatalytically Active Superstructures of Quantum Dots and Iron Porphyrins for Reduction of CO2 to CO in Water. ACS Nano 2018, 12, 568–575. [Google Scholar] [CrossRef]
- Xia, W.; Wu, J.; Hu, J.C.; Sun, S.; Li, M.D.; Liu, H.; Lan, M.; Wang, F. Highly Efficient Photocatalytic Conversion of CO2 to CO Catalyzed by Surface-Ligand-Removed and Cd-Rich CdSe Quantum Dots. ChemSusChem 2019, 12, 4617–4622. [Google Scholar] [CrossRef] [PubMed]
- Aldana, J.; Wang, Y.A.; Peng, X. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols. J. Am. Chem. Soc. 2001, 123, 8844–8850. [Google Scholar] [CrossRef]
- Jensen, S.C.; Homan, S.B.; Weiss, E.A. Photocatalytic Conversion of Nitrobenzene to Aniline through Sequential Proton-Coupled One-Electron Transfers from a Cadmium Sulfide Quantum Dot. J. Am. Chem. Soc. 2016, 138, 1591–1600. [Google Scholar] [CrossRef]
- Wu, X.; Fan, X.; Xie, S.; Lin, J.; Cheng, J.; Zhang, Q.; Chen, L.; Wang, Y. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nat. Catal. 2018, 1, 772–780. [Google Scholar] [CrossRef]
- Zhang, Z.; Edme, K.; Lian, S.; Weiss, E.A. Enhancing the Rate of Quantum-Dot-Photocatalyzed Carbon–Carbon Coupling by Tuning the Composition of the Dot’s Ligand Shell. J. Am. Chem. Soc. 2017, 139, 4246–4249. [Google Scholar] [CrossRef]
- McClelland, K.P.; Weiss, E.A. Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde or C–C Coupled Products by Visible-Light-Absorbing Quantum Dots. ACS Appl. Energ. Mater. 2018, 2, 92–96. [Google Scholar] [CrossRef]
- Wu, X.; Xie, S.; Liu, C.; Zhou, C.; Lin, J.; Kang, J.; Zhang, Q.; Wang, Z.; Wang, Y. Ligand-Controlled Photocatalysis of CdS Quantum Dots for Lignin Valorization under Visible Light. ACS Catal. 2019, 9, 8443–8451. [Google Scholar] [CrossRef]
- Hu, J.; Pu, T.-J.; Xu, Z.-W.; Xu, W.-Y.; Feng, Y.-S. Cadmium Sulfide Quantum-Dot-Photocatalyzed Cascade Cyclization of Functionalized Difluoromethyl Chlorides with Unactivated Olefins. Adv. Synth. Catal. 2019, 361, 708–713. [Google Scholar] [CrossRef]
- Li, X.B.; Li, Z.J.; Gao, Y.J.; Meng, Q.Y.; Yu, S.; Weiss, R.G.; Tung, C.H.; Wu, L.Z. Mechanistic insights into the interface-directed transformation of thiols into disulfides and molecular hydrogen by visible-light irradiation of quantum dots. Angew. Chem. 2014, 53, 2085–2089. [Google Scholar] [CrossRef]
- Hajipour, A.R.; Mallakpour, S.E.; Adibi, H. Selective and efficient oxidation of sulfides and thiols with benzyltriphenylphosphonium peroxymonosulfate in aprotic solvent. J. Org. Chem. 2002, 67, 8666–8668. [Google Scholar] [CrossRef]
- Vandavasi, J.K.; Hu, W.-P.; Chen, C.-Y.; Wang, J.-J. Efficient synthesis of unsymmetrical disulfides. Tetrahedron 2011, 67, 8895–8901. [Google Scholar] [CrossRef]
- Zhao, L.M.; Meng, Q.Y.; Fan, X.B.; Ye, C.; Li, X.B.; Chen, B.; Ramamurthy, V.; Tung, C.H.; Wu, L.Z. Photocatalysis with Quantum Dots and Visible Light: Selective and Efficient Oxidation of Alcohols to Carbonyl Compounds through a Radical Relay Process in Water. Angew. Chem. 2017, 56, 3020–3024. [Google Scholar] [CrossRef] [PubMed]
- Caputo, J.A.; Frenette, L.C.; Zhao, N.; Sowers, K.L.; Krauss, T.D.; Weix, D.J. General and Efficient C–C Bond Forming Photoredox Catalysis with Semiconductor Quantum Dots. J. Am. Chem. Soc. 2017, 139, 4250–4253. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhu, Y.; Egap, E. Semiconductor Quantum Dots as Photocatalysts for Controlled Light-Mediated Radical Polymerization. ACS Macro Lett. 2018, 7, 184–189. [Google Scholar] [CrossRef]
- Chandrashekar, H.B.; Maji, A.; Halder, G.; Banerjee, S.; Bhattacharyya, S.; Maiti, D. Photocatalyzed borylation using water-soluble quantum dots. Chem. Commun. 2019, 55, 6201–6204. [Google Scholar] [CrossRef] [PubMed]
- Enright, M.J.; Gilbert-Bass, K.; Sarsito, H.; Cossairt, B.M. Photolytic C–O Bond Cleavage with Quantum Dots. Chem. Mater. 2019, 31, 2677–2682. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, C.; Rogers, C.R.; Kodaimati, M.S.; Weiss, E.A. Regio- and diastereoselective intermolecular [2+2] cycloadditions photocatalysed by quantum dots. Nat. Chem. 2019, 11, 1034–1040. [Google Scholar] [CrossRef]
- McClelland, K.P.; Clemons, T.D.; Stupp, S.I.; Weiss, E.A. Semiconductor Quantum Dots Are Efficient and Recyclable Photocatalysts for Aqueous PET-RAFT Polymerization. ACS Macro Lett. 2019, 9, 7–13. [Google Scholar] [CrossRef]
- Zhu, Y.; Egap, E. PET-RAFT polymerization catalyzed by cadmium selenide quantum dots (QDs): Grafting-from QDs photocatalysts to make polymer nanocomposites. Polym. Chem. 2020, 11, 1018–1024. [Google Scholar] [CrossRef]
- Pal, A.; Ghosh, I.; Sapra, S.; König, B. Quantum Dots in Visible-Light Photoredox Catalysis: Reductive Dehalogenations and C-H Arylation Reactions Using Aryl Bromides. Chem. Mater. 2017, 29, 5225–5231. [Google Scholar] [CrossRef]
- Guo, Q.; Liang, F.; Li, X.-B.; Gao, Y.-J.; Huang, M.-Y.; Wang, Y.; Xia, S.-G.; Gao, X.-Y.; Gan, Q.-C.; Lin, Z.-S.; et al. Efficient and Selective CO2 Reduction Integrated with Organic Synthesis by Solar Energy. Chem 2019, 5, 2605–2616. [Google Scholar] [CrossRef]
- Xi, Z.W.; Yang, L.; Wang, D.Y.; Feng, C.W.; Qin, Y.; Shen, Y.M.; Pu, C.; Peng, X. Visible Light Induced Reduction and Pinacol Coupling of Aldehydes and Ketones Catalyzed by Core/Shell Quantum Dots. J. Org. Chem. 2021, 86, 2474–2488. [Google Scholar] [CrossRef]
- Chakraborty, I.N.; Roy, S.; Devatha, G.; Rao, A.; Pillai, P.P. InP/ZnS Quantum Dots as Efficient Visible-Light Photocatalysts for Redox and Carbon–Carbon Coupling Reactions. Chem. Mater. 2019, 31, 2258–2262. [Google Scholar] [CrossRef]
- Perez, K.A.; Rogers, C.R.; Weiss, E.A. Quantum Dot-Catalyzed Photoreductive Removal of Sulfonyl-Based Protecting Groups. Angew. Chem. 2020, 59, 14091–14095. [Google Scholar] [CrossRef]
- Chen, K.; Deng, X.; Dodekatos, G.; Tuysuz, H. Photocatalytic Polymerization of 3, 4-Ethylenedioxythiophene over Cesium Lead Iodide Perovskite Quantum Dots. J. Am. Chem. Soc. 2017, 139, 12267–12273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Lu, H.; Zhu, X.; Lin, Y.; Beard, M.C.; Yan, Y.; Chen, X. Ultrafast Reaction Mechanisms in Perovskite Based Photocatalytic C–C Coupling. ACS Energ. Lett. 2020, 5, 566–571. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhu, H.; Hills-Kimball, K.; Cai, T.; Shi, W.; Wei, Z.; Yang, H.; Candler, Y.; Wang, P.; He, J.; et al. Stereoselective C–C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr3 Perovskite Quantum Dots. Angew. Chem. 2020, 59, 22563–22569. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.-Y.; Yin, Y.-Y.; Feng, C.-W.; Rukhsana; Shen, Y.-M. Advances in Homogeneous Photocatalytic Organic Synthesis with Colloidal Quantum Dots. Catalysts 2021, 11, 275. https://doi.org/10.3390/catal11020275
Wang D-Y, Yin Y-Y, Feng C-W, Rukhsana, Shen Y-M. Advances in Homogeneous Photocatalytic Organic Synthesis with Colloidal Quantum Dots. Catalysts. 2021; 11(2):275. https://doi.org/10.3390/catal11020275
Chicago/Turabian StyleWang, Dan-Yan, Yu-Yun Yin, Chuan-Wei Feng, Rukhsana, and Yong-Miao Shen. 2021. "Advances in Homogeneous Photocatalytic Organic Synthesis with Colloidal Quantum Dots" Catalysts 11, no. 2: 275. https://doi.org/10.3390/catal11020275
APA StyleWang, D. -Y., Yin, Y. -Y., Feng, C. -W., Rukhsana, & Shen, Y. -M. (2021). Advances in Homogeneous Photocatalytic Organic Synthesis with Colloidal Quantum Dots. Catalysts, 11(2), 275. https://doi.org/10.3390/catal11020275