Nanocatalysts for Hydrogen Production
Conflicts of Interest
References
- Chen, L.; Qi, Z.; Zhang, S.; Su, J.; Somorjai, G.A. Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect. Catalysts 2020, 10, 858. [Google Scholar] [CrossRef]
- Kim, H.; Lee, Y.-H.; Lee, H.; Seo, J.-C.; Lee, K. Effect of Mg Contents on Catalytic Activity and Coke Formation of Mesoporous Ni/Mg-aluminate Spinel Catalyst for Steam Methane Reforming. Catalysts 2020, 10, 828. [Google Scholar] [CrossRef]
- Sangsong, S.; Ratana, T.; Tungkamani, S.; Sornchamni, T.; Phongaksorn, M.; Croiset, E. The Demonstration of the Superiority of the Dual Ni-Based Catalytic System for the Adjustment of the H2/CO Ratio in Syngas for Green Fuel Technologies. Catalysts 2020, 10, 1056. [Google Scholar] [CrossRef]
- Huff, C.; Long, J.M.; Abdel-Fattah, T.M. Beta-Cyclodextrin-Assisted Synthesis of Silver Nanoparticle Network and Its Application in a Hydrogen Generation Reaction. Catalysts 2020, 10, 1014. [Google Scholar] [CrossRef]
- Choi, Y.S.; Oh, K.; Jung, K.-D.; Kim, W.-I.; Koh, H.L. Regeneration of Pt-Sn/Al2O3 Catalyst for Hydrogen Production through Propane Dehydrogenation Using Hydrochloric Acid. Catalysts 2020, 10, 898. [Google Scholar] [CrossRef]
- Cho, E.H.; Kim, W.; Ko, C.H.; Yoon, W.L. Enhanced CO2 Methanation Reaction in C1 Chemistry over a Highly Dispersed Nickel Nanocatalyst Prepared Using the One-Step Melt-Infiltration Method. Catalysts 2020, 10, 643. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Pan, Z.; Xu, H. Numerical Simulation and Experimental Study on Commercial Diesel Reforming over an Advanced Pt/Rh Three-Way Catalyst. Catalysts 2019, 9, 590. [Google Scholar] [CrossRef] [Green Version]
- Jeon, Y.; Jung, H.-K.; Park, C.-I.; Shul, Y.; Park, J.-I. Light Cycle Oil Source for Hydrogen Production through Autothermal Reforming using Ruthenium doped Perovskite Catalysts. Catalysts 2020, 10, 1039. [Google Scholar] [CrossRef]
- Kim, K.-J.; Lee, Y.-L.; Na, H.-S.; Ahn, S.-Y.; Shim, J.-O.; Jeon, B.-H.; Roh, H.-S. Efficient Waste to Energy Conversion Based on Co-CeO2 Catalyzed Water-Gas Shift Reaction. Catalysts 2020, 10, 420. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roh, H.-S. Nanocatalysts for Hydrogen Production. Catalysts 2021, 11, 288. https://doi.org/10.3390/catal11020288
Roh H-S. Nanocatalysts for Hydrogen Production. Catalysts. 2021; 11(2):288. https://doi.org/10.3390/catal11020288
Chicago/Turabian StyleRoh, Hyun-Seog. 2021. "Nanocatalysts for Hydrogen Production" Catalysts 11, no. 2: 288. https://doi.org/10.3390/catal11020288
APA StyleRoh, H.-S. (2021). Nanocatalysts for Hydrogen Production. Catalysts, 11(2), 288. https://doi.org/10.3390/catal11020288