Comparative Photo-Electrochemical and Photocatalytic Studies with Nanosized TiO2 Photocatalysts towards Organic Pollutants Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Titania Powders
2.2. Photo-Electrochemical Analysis
2.3. Photodegradation Results
2.4. Comparison between the Photo-Electrocatalytic Experiments in Aqueous Phase and Photocatalytic Experiments in Gas Phase
- (i)
- In gas phase, the acetone is fully mineralized, thus exchanging 16 electrons with the photocatalyst. This assumption is not relevant, as even with partial mineralization we could estimate .
- (ii)
- The total real area of the photocatalyst is exposed to the reactive medium. Thus, the surface area () and amount () of photocatalyst are relevant parameters when estimating .
- (iii)
- The value of (aqueous phase) should be renormalized with respect to the surface area of the electrode in order to compare its magnitude with (gas phase). This normalization implicitly assumes the electrolyte permeates all the nanostructured thin film electrodes studied.
3. Experimental Section
3.1. Reagents and Chemicals
3.2. Materials Characterization
3.3. Preparation of Electrodes
3.4. Photo-Electrochemical Measurements
3.5. Photocatalytic Set-Up
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Djellabi, R.; Ghorab, M.F.; Smara, A.; Bianchi, C.L.; Cerrato, G.; Zhao, X.; Yang, B. Titania–Montmorillonite for the Photocatalytic Removal of Contaminants from Water: Adsorb & Shuttle Process., Green Materials for Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 2020; pp. 291–319. [Google Scholar]
- Fagan, R.; McCormack, D.E.; Dionysiou, D.D.; Pillai, S.C. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater. Sci. Semicond. Process. 2016, 42, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Liu, S.; Dai, Z.; He, Y.; Song, X.; Tan, Z. Titanium dioxide: From engineering to applications. Catalysts 2019, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Lowry, G.V.; Gregory, K.B.; Apte, S.C.; Lead, J.R. Transformations of Nanomaterials in the Environment; ACS Publications: Washington, DC, USA, 2012. [Google Scholar]
- Nam, Y.; Lim, J.H.; Ko, K.C.; Lee, J.Y. Photocatalytic activity of TiO2 nanoparticles: A theoretical aspect. J. Mater. Chem. A 2019, 7, 13833–13859. [Google Scholar] [CrossRef]
- Hou, J.; Wang, L.; Wang, C.; Zhang, S.; Liu, H.; Li, S.; Wang, X. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J. Environ. Sci. 2019, 75, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, S.; Kim, B.; Lee, S.; Lee, J.; Sim, S.; Gu, M.; Yi, J.; Lee, J. Toxic effects of titanium dioxide nanoparticles on microbial activity and metabolic flux. Biotechnol. Bioprocess Eng. 2012, 17, 276–282. [Google Scholar] [CrossRef]
- Baranowska-Wójcik, E.; Szwajgier, D.; Oleszczuk, P.; Winiarska-Mieczan, A. Effects of titanium dioxide nanoparticles exposure on human health—A review. Biol. Trace Elem. Res. 2020, 193, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Oravisjärvi, K.; Pietikäinen, M.; Ruuskanen, J.; Rautio, A.; Voutilainen, A.; Keiski, R.L. Effects of physical activity on the deposition of traffic-related particles into the human lungs in silico. Sci. Total Environ. 2011, 409, 4511–4518. [Google Scholar] [CrossRef]
- Ai, J.; Biazar, E.; Jafarpour, M.; Montazeri, M.; Majdi, A.; Aminifard, S.; Zafari, M.; Akbari, H.R.; Rad, H.G. Nanotoxicology and nanoparticle safety in biomedical designs. Int. J. Nanomed. 2011, 6, 1117. [Google Scholar]
- Xiong, S.; George, S.; Ji, Z.; Lin, S.; Yu, H.; Damoiseaux, R.; France, B.; Ng, K.W.; Loo, S.C.J. Size of TiO2 nanoparticles influences their phototoxicity: An in vitro investigation. Arch. Toxicol. 2013, 87, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Cai, K.; Hou, Y.; Hu, Y.; Zhao, L.; Luo, Z.; Shi, Y.; Lai, M.; Yang, W.; Liu, P. Correlation of the cytotoxicity of TiO2 nanoparticles with different particle sizes on a sub-200-nm scale. Small 2011, 7, 3026–3031. [Google Scholar] [CrossRef]
- Bianchi, C.; Gatto, S.; Pirola, C.; Naldoni, A.; Di Michele, A.; Cerrato, G.; Crocella, V.; Capucci, V. Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Appl. Catal. B Environ. 2014, 146, 123–130. [Google Scholar] [CrossRef]
- Bianchi, C.L.; Sacchi, B.; Pirola, C.; DeMartin, F.; Cerrato, G.; Morandi, S.; Capucci, V. Aspirin and paracetamol removal using a commercial micro-sized TiO2 catalyst in deionized and tap water. Environ. Sci. Pollut. Res. 2016, 24, 12646–12654. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, C.L.; Colombo, E.; Gatto, S.; Stucchi, M.; Cerrato, G.; Morandi, S.; Capucci, V. Photocatalytic degradation of dyes in water with micro-sized TiO2 as powder or coated on porcelain-grès tiles. J. Photochem. Photobiol. A Chem. 2014, 280, 27–31. [Google Scholar] [CrossRef]
- Djellabi, R.; Ghorab, M.F.; Sehili, T. Simultaneous removal of methylene blue and hexavalent chromium from water using TiO2/Fe(III)/H2O2/sunlight. Clean-Soil Air Water 2017, 45, 1500379. [Google Scholar] [CrossRef]
- Chen, S.; Thind, S.S.; Chen, A. Nanostructured materials for water splitting-state of the art and future needs: A mini-review. Electrochem. Commun. 2016, 63, 10–17. [Google Scholar] [CrossRef]
- Ho-Kimura, S.; Moniz, S.J.A.; Handoko, A.D.; Tang, J. Enhanced photoelectrochemical water splitting by nanostructured BiVO4–TiO2 composite electrodes. J. Mater. Chem. A 2014, 2, 3948–3953. [Google Scholar] [CrossRef]
- Jafari, T.; Moharreri, E.; Amin, A.S.; Miao, R.; Song, W.; Suib, S.L. Photocatalytic water splitting—The untamed dream: A review of recent advances. Molecules 2016, 21, 900. [Google Scholar] [CrossRef] [PubMed]
- Szymanski, P.; El-Sayed, M.A. Some Recent Developments in Photoelectrochemical Water Splitting Using Nanostructured TiO2: A Short Review; Marco Antonio Chaer Nascimento; Springer: Berlin/Heidelberg, Germany, 2014; pp. 7–18. [Google Scholar]
- Mais, L.; Mascia, M.; Palmas, S.; Vacca, A. Photoelectrochemical oxidation of phenol with nanostructured TiO2-PANI electrodes under solar light irradiation. Sep. Purif. Technol. 2019, 208, 153–159. [Google Scholar] [CrossRef]
- Kondalkar, V.V.; Mali, S.S.; Mane, R.M.; Dandge, P.B.; Choudhury, S.; Hong, C.K.; Patil, P.S.; Patil, S.R.; Kim, J.H.; Bhosale, P.N. Photoelectrocatalysis of cefotaxime using nanostructured TiO2 photoanode: Identification of the degradation products and determination of the toxicity level. Ind. Eng. Chem. Res. 2014, 53, 18152–18162. [Google Scholar] [CrossRef]
- Tang, Y.; Ren, H.; Huang, J. Synthesis of porous TiO2 nanowires and their photocatalytic properties. Front. Optoelectron. 2017, 10, 395–401. [Google Scholar] [CrossRef]
- Zhang, J.; Djellabi, R.; Zhao, S.; Qiao, M.; Jiang, F.; Yan, M.; Zhao, X. Recovery of phosphorus and metallic nickel along with HCl production from electroless nickel plating effluents: The key role of three-compartment photoelectrocatalytic cell system. J. Hazard. Mater. 2020, 394, 122559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, X.; Wang, Y.; Djellabi, R. Recovery of Phosphorus from Hypophosphite-Laden Wastewater: A Single-Compartment Photoelectrocatalytic Cell System Integrating Oxidation and Precipitation. Environ. Sci. Technol. 2019, 54, 1204–1213. [Google Scholar] [CrossRef]
- Monllor-Satoca, D.; Lana-Villarreal, T.; Gómez, R. Effect of surface fluorination on the electrochemical and photoelectrocatalytic properties of nanoporous titanium dioxide electrodes. Langmuir 2011, 27, 15312–15321. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Hahn, C.; Liu, B.; Yang, P. Photoelectrochemical properties of TiO2 nanowire arrays: A study of the dependence on length and atomic layer deposition coating. ACS Nano 2012, 6, 5060–5069. [Google Scholar] [CrossRef]
- Ochiai, T.; Fujishima, A. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 247–262. [Google Scholar] [CrossRef]
- Acevedo-Peña, P.; González, I. Relation between morphology and photoelectrochemical performance of TiO2 nanotubes arrays grown in ethylene glycol/water. Procedia Chem. 2014, 12, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Ennaceri, H.; Fischer, K.; Hanus, K.; Chemseddine, A.; Prager, A.; Griebel, J.; Kühnert, M.; Schulze, A.; Abel, B. Effect of Morphology on the Photoelectrochemical Activity of TiO2 Self-Organized Nanotube Arrays. Catalysts 2020, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Ibadurrohman, M.; Hellgardt, K. Morphological modification of TiO2 thin films as highly efficient photoanodes for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2015, 7, 9088–9097. [Google Scholar] [CrossRef]
- Lana-Villarreal, T.; Mao, Y.; Wong, S.S.; Gómez, R. Photoelectrochemical behaviour of anatase nanoporous films: Effect of the nanoparticle organization. Nanoscale 2010, 2, 1690–1698. [Google Scholar] [CrossRef]
- Bickley, R.I.; Gonzalez-Carreno, T.; Lees, J.S.; Palmisano, L.; Tilley, R.J. A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem. 1991, 92, 178–190. [Google Scholar] [CrossRef]
- Djellabi, R.; Yang, B.; Wang, Y.; Cui, X.; Zhao, X. Carbonaceous biomass-titania composites with Ti–O–C bonding bridge for efficient photocatalytic reduction of Cr(VI) under narrow visible light. Chem. Eng. J. 2019, 366, 172–180. [Google Scholar] [CrossRef]
- Djellabi, R.; Yang, B.; Xiao, K.; Gong, Y.; Cao, D.; Sharif, H.M.A.; Zhao, X.; Zhu, C.; Zhang, J. Unravelling the mechanistic role of Ti–O–C bonding bridge at titania/lignocellulosic biomass interface for Cr(VI) photoreduction under visible light. J. Colloid Interface Sci. 2019, 553, 409–417. [Google Scholar] [CrossRef]
- Berger, T.; Lana-Villarreal, T.; Monllor-Satoca, D.; Gómez, R. Thin films of rutile quantum-size nanowires as electrodes: Photoelectrochemical studies. J. Phys. Chem. C 2008, 112, 15920–15928. [Google Scholar] [CrossRef]
- Jankulovska, M.; Barceló, I.; Lana-Villarreal, T.; Gómez, R. Improving the photoelectrochemical response of TiO2 nanotubes upon decoration with quantum-sized anatase nanowires. J. Phys. Chem. C 2013, 117, 4024–4031. [Google Scholar] [CrossRef]
- Lyon, L.A.; Hupp, J.T. Energetics of semiconductor electrode/solution interfaces: EQCM evidence for charge-compensating cation adsorption and intercalation during accumulation layer formation in the titanium dioxide/acetonitrile system. J. Phys. Chem. 1995, 99, 15718–15720. [Google Scholar] [CrossRef]
- Berger, T.; Monllor-Satoca, D.; Jankulovska, M.; Lana-Villarreal, T.; Gómez, R. The electrochemistry of nanostructured titanium dioxide electrodes. ChemPhysChem 2012, 13, 2824–2875. [Google Scholar] [CrossRef]
- Morand, R.; Lopez, C.; Koudelka-Hep, M.; Kędzierzawski, P.; Augustynski, J. Photoelectrochemical behavior in low-conductivity media of nanostructured TiO2 films deposited on interdigitated microelectrode arrays. J. Phys. Chem. B 2002, 106, 7218–7224. [Google Scholar] [CrossRef]
- Kesselman, J.M.; Shreve, G.A.; Hoffmann, M.R.; Lewis, N.S. Flux-matching conditions at TiO2 photoelectrodes: Is interfacial electron transfer to O2 rate-limiting in the TiO2-catalyzed photochemical degradation of organics? J. Phys. Chem. 1994, 98, 13385–13395. [Google Scholar] [CrossRef]
- Bullock, E.; Patthey, L.; Steinemann, S. Clean and hydroxylated rutile TiO2(110) surfaces studied by X-ray photoelectron spectroscopy. Surf. Sci. 1996, 352–354, 504–510. [Google Scholar] [CrossRef]
- Monllor-Satoca, D.; Díez-García, M.I.; Lana-Villarreal, T.; Gómez, R. Photoelectrocatalytic production of solar fuels with semiconductor oxides: Materials, activity and modeling. Chem. Commun. 2020, 56, 12272–12289. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, C.L.; Pirola, C.; Selli, E.; Biella, S. Photocatalytic NOx abatement: The role of the material supporting the TiO2 active layer. J. Hazard. Mater. 2012, 211, 203–207. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monllor-Satoca, D.; Bonete, P.; Djellabi, R.; Cerrato, G.; Operti, L.; Gómez, R.; Bianchi, C.L. Comparative Photo-Electrochemical and Photocatalytic Studies with Nanosized TiO2 Photocatalysts towards Organic Pollutants Oxidation. Catalysts 2021, 11, 349. https://doi.org/10.3390/catal11030349
Monllor-Satoca D, Bonete P, Djellabi R, Cerrato G, Operti L, Gómez R, Bianchi CL. Comparative Photo-Electrochemical and Photocatalytic Studies with Nanosized TiO2 Photocatalysts towards Organic Pollutants Oxidation. Catalysts. 2021; 11(3):349. https://doi.org/10.3390/catal11030349
Chicago/Turabian StyleMonllor-Satoca, Damián, Pedro Bonete, Ridha Djellabi, Giuseppina Cerrato, Lorenza Operti, Roberto Gómez, and Claudia Letizia Bianchi. 2021. "Comparative Photo-Electrochemical and Photocatalytic Studies with Nanosized TiO2 Photocatalysts towards Organic Pollutants Oxidation" Catalysts 11, no. 3: 349. https://doi.org/10.3390/catal11030349
APA StyleMonllor-Satoca, D., Bonete, P., Djellabi, R., Cerrato, G., Operti, L., Gómez, R., & Bianchi, C. L. (2021). Comparative Photo-Electrochemical and Photocatalytic Studies with Nanosized TiO2 Photocatalysts towards Organic Pollutants Oxidation. Catalysts, 11(3), 349. https://doi.org/10.3390/catal11030349