Optical Management of CQD/AgNP@SiNW Arrays with Highly Efficient Capability of Dye Degradation
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Regents
3.2. Formation of CQD/AgNPs
3.3. Formation of Aligned SiNWs
3.4. Photocatalytic Measurements
3.5. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saenz, G.A.; Karapetrov, G.; Curtis, J.; Kaul, A.B. Ultra-high photoresponsivity in suspended metal-semiconductor-metal mesoscopic multilayer MoS2 broadband detector from UV-to-IR with low Schottky barrier contacts. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xi, X.; Li, X.; Lin, S.; Ma, Z.; Xiu, H.; Zhao, L. Ultra-high and fast ultraviolet response photodetectors based on lateral porous gan/ag nanowires composite nanostructure. Adv. Opt. Mater. 2020, 8, 1902162. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Tian, F.; Duan, D.; Liu, B.; Cui, T. Strain-engineering enables reversible semiconductor–metal transition of skutterudite IrAs 3. Inorg. Chem. Front. 2020, 7, 1108–1114. [Google Scholar] [CrossRef]
- Hsiao, P.-H.; Wei, T.-C.; Chen, C.-Y. Stability improvement of Cu(ii)-doped ZnS/ZnO photodetectors prepared with a facile solution-processing method. Inorg. Chem. Front. 2021, 8, 311–318. [Google Scholar] [CrossRef]
- Cesca, T.; Scian, C.; Petronijevic, E.; Leahu, G.; Voti, R.L.; Cesarini, G.; Macaluso, R.; Mosca, M.; Sibilia, C.; Mattei, G. Correlation between in situ structural and optical characterization of the semiconductor-to-metal phase transition of VO2 thin films on sapphire. Nanoscale 2020, 12, 851–863. [Google Scholar] [CrossRef] [Green Version]
- Tan, E.K.; Shrestha, P.K.; Pansare, A.V.; Chakrabarti, S.; Li, S.; Chu, D.; Lowe, C.R.; Nagarkar, A.A. Density modulation of embedded nanoparticles via spatial, temporal, and chemical control elements. Adv. Mater. 2019, 31, 1901802. [Google Scholar] [CrossRef]
- Li, R.; Pang, C.; Li, Z.; Chen, F. Plasmonic nanoparticles in dielectrics synthesized by ion beams: Optical properties and photonic applications. Adv. Opt. Mater. 2020, 8, 1902087. [Google Scholar] [CrossRef]
- Qin, Y.; Li, L.; Zhao, X.; Tompa, G.S.; Dong, H.; Jian, G.; He, Q.; Tan, P.; Hou, X.; Zhang, Z. Metal–semiconductor–metal ε-Ga2O3 solar-blind Photodetectors with a record-high responsivity rejection ratio and their gain mechanism. ACS Photonics 2020, 7, 812–820. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Lin, T.-J.; Liao, P.-C. High-performance metal-semiconductor-metal ZnSnO UV photodetector via controlling the nanocluster size. Nanotechnology 2020, 31, 495203. [Google Scholar] [CrossRef]
- Hsiao, P.-H.; Lai, Y.-C.; Chen, C.-Y. Dual-sized carbon quantum dots enabling outstanding silicon-based photodetectors. Appl. Surf. Sci. 2021, 542, 148705. [Google Scholar] [CrossRef]
- Chen, X.; Wang, D.; Wang, T.; Yang, Z.; Zou, X.; Wang, P.; Luo, W.; Li, Q.; Liao, L.; Hu, W. Enhanced photoresponsivity of a GaAs nanowire metal-semiconductor-metal photodetector by adjusting the fermi level. ACS Appl. Mater. Interfaces 2019, 11, 33188–33193. [Google Scholar] [CrossRef] [PubMed]
- Yip, H.-L.; Hau, S.K.; Baek, N.S.; Jen, A.K.-Y. Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells. Appl. Phys. Lett. 2008, 92, 179. [Google Scholar] [CrossRef]
- Kim, M.R.; Xu, Z.; Chen, G.; Ma, D. Semiconductor and metallic core–shell nanostructures: Synthesis and applications in solar cells and catalysis. Chem. Eur. J. 2014, 20, 11256–11275. [Google Scholar] [CrossRef]
- Wei, T.-C.; Chen, S.-H.; Chen, C.-Y. Highly conductive PEDOT:PSS film made with ethylene-glycol addition and heated-stir treatment for enhanced photovoltaic performances. Mater. Chem. Front. 2020, 4, 3302–3309. [Google Scholar] [CrossRef]
- Nouman, M.T.; Kim, H.-W.; Woo, J.M.; Hwang, J.H.; Kim, D.; Jang, J.-H. Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors. Sci. Rep. 2016, 6, 1–7. [Google Scholar]
- Hsiao, P.-H.; Chen, C.-Y. Insights for realizing ultrasensitive colorimetric detection of glucose based on carbon/silver core/shell nanodots. ACS Appl. Bio Mater. 2019, 2, 2528–2538. [Google Scholar] [CrossRef]
- Freedsman, J.J.; Kubo, T.; Egawa, T. Trap characterization of in-situ metal-organic chemical vapor deposition grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructures by frequency dependent conductance technique. Appl. Phys. Lett. 2011, 99, 033504. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; He, C.; Zhu, C.; Li, Q.; Li, X.; Liu, K.; Zeng, X. Selective laser-induced preparation of metal-semiconductor nanocomposites and application for enhanced photocatalytic performance in the degradation of organic pollutants. J. Alloys Compd. 2021, 867, 159062. [Google Scholar] [CrossRef]
- Hsiao, P.-H.; Li, T.-C.; Chen, C.-Y. ZnO/Cu2O/Si Nanowire Arrays as Ternary Heterostructure-Based Photocatalysts with Enhanced Photodegradation Performances. Nanoscale Res. Lett. 2019, 14, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pansare, A.V.; Khairkar, S.R.; Shedge, A.A.; Chhatre, S.Y.; Patil, V.R.; Nagarkar, A.A. In situ nanoparticle embedding for authentication of epoxy composites. Adv. Mater. 2018, 30, 1801523. [Google Scholar] [CrossRef]
- Tasche, D.; Weber, M.; Mrotzek, J.; Gerhard, C.; Wieneke, S.; Möbius, W.; Höfft, O.; Viöl, W. In situ investigation of the formation kinematics of plasma-generated silver nanoparticles. Nanomaterials 2020, 10, 555. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.-H.; Hsiao, P.-H.; Chen, C.-Y. Efficient Photocatalysts Made by Uniform Decoration of Cu2O Nanoparticles on Si Nanowire Arrays with Low Visible Reflectivity. Nanoscale Res. Lett. 2018, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Chen, M.; Hu, L.; Chen, X.; Wang, J. Growth and stabilization of silver nanoparticles on carbon dots and sensing application. Langmuir 2013, 29, 16135–16140. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Bao, M.; Ni, X. A novel surface modification of silicon nanowires by polydopamine to prepare SiNWs/NC@ NiO electrode for high-performance supercapacitor. Surf. Coat. Technol. 2021, 406, 126660. [Google Scholar] [CrossRef]
- Li, B.; Feng, Y.; Ding, K.; Qian, G.; Zhang, X.; Zhang, J. The effect of gamma ray irradiation on the structure of graphite and multi-walled carbon nanotubes. Carbon 2013, 60, 186–192. [Google Scholar] [CrossRef]
- Elgamouz, A.; Idriss, H.; Nassab, C.; Bihi, A.; Bajou, K.; Hasan, K.; Abu Haija, M.; Patole, S.P. Green synthesis, characterization, antimicrobial, anti-cancer, and optimization of colorimetric sensing of hydrogen peroxide of algae extract capped silver nanoparticles. Nanomaterials 2020, 10, 1861. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Yuan, J.; Li, Y.; Li, J.; Zhou, S.; Yao, C.; Liao, L.; Zhuang, S.; Zhao, Y. A silver nanocluster containing interstitial sulfur and unprecedented chemical bonds. Angew. Chem. Int. Ed. Engl. 2018, 57, 11273–11277. [Google Scholar] [CrossRef]
- Guizani, C.; Haddad, K.; Limousy, L.; Jeguirim, M. New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis. Carbon 2017, 119, 519–521. [Google Scholar] [CrossRef]
- Kato, R.; Igarashi, S.; Umakoshi, T.; Verma, P. Tip-enhanced raman spectroscopy of multiwalled carbon nanotubes through d-band imaging: Implications for nanoscale analysis of interwall interactions. ACS Appl. Nano Mater. 2020, 3, 6001–6008. [Google Scholar] [CrossRef]
- Wang, C.-B.; Deo, G.; Wachs, I.E. Interaction of polycrystalline silver with oxygen, water, carbon dioxide, ethylene, and methanol: In situ Raman and catalytic studies. J. Phys. Chem. B 1999, 103, 5645–5656. [Google Scholar] [CrossRef]
- Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K.S.; Luk, C.M.; Zeng, S.; Hao, J. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 2012, 6, 5102–5110. [Google Scholar] [CrossRef]
- Bai, Z.; Yu, D.; Wang, J.; Zou, Y.; Qian, W.; Fu, J.; Feng, S.; Xu, J.; You, L. Synthesis and photoluminescence properties of semiconductor nanowires. Mater. Sci. Eng. B 2000, 72, 117–120. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 2017, 13, 10–14. [Google Scholar] [CrossRef]
- Kim, S.-H.; Ngo, H.H.; Shon, H.; Vigneswaran, S. Adsorption and photocatalysis kinetics of herbicide onto titanium oxide and powdered activated carbon. Sep. Purif. Technol. 2008, 58, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Hsu, L.-J. Kinetic study of self-assembly of Ni (II)-doped TiO2 nanocatalysts for the photodegradation of azo pollutants. RSC Adv. 2015, 5, 88266–88271. [Google Scholar] [CrossRef]
- Kumar, K.V.; Porkodi, K.; Rocha, F. Langmuir–Hinshelwood kinetics–a theoretical study. Catal. Commun. 2008, 9, 82–84. [Google Scholar] [CrossRef]
- Wang, H.; Wei, W.; Li, F.; Huang, B.; Dai, Y. Step-like band alignment and stacking-dependent band splitting in trilayer TMD heterostructures. Phys. Chem. Chem. Phys. 2018, 20, 25000–25008. [Google Scholar] [CrossRef]
- Yakimov, A.; Dvurechenskii, A.; Nikiforov, A.; Bloshkin, A.; Nenashev, A.; Volodin, V. Electronic states in Ge/Si quantum dots with type-II band alignment initiated by space-charge spectroscopy. Phys. Rev. B 2006, 73, 115333. [Google Scholar] [CrossRef]
- Wendisch, F.J.; Abazari, M.; Mahdavi, H.; Rey, M.; Vogel, N.; Musso, M.; Diwald, O.; Bourret, G.R. Morphology-graded silicon nanowire arrays via chemical etching: Engineering optical properties at the nanoscale and macroscale. ACS Appl. Mater. Interfaces 2020, 12, 13140–13147. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Wei, T.-C.; Hsiao, P.-H.; Hung, C.-H. Vanadium oxide as transparent carrier-selective layer in silicon hybrid solar cells promoting photovoltaic performances. ACS Appl. Energy Mater. 2019, 2, 4873–4881. [Google Scholar] [CrossRef]
- Lan, J.; He, B.; Haw, C.; Gao, M.; Khan, I.; Zheng, R.; Guo, S.; Zhao, J.; Wang, Z.; Huang, S. Band engineering of ZnO/Si nanowire arrays in Z-scheme heterojunction for efficient dye photodegradation. Appl. Surf. Sci. 2020, 529, 147023. [Google Scholar] [CrossRef]
- Tang, C.-H.; Chen, K.-Y.; Chen, C.-Y. Solution-processed ZnO/Si based heterostructures with enhanced photocatalytic performance. New J. Chem. 2018, 42, 13797–13802. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Hsiao, P.-H.; Wei, T.-C.; Chen, T.-C.; Tang, C.-H. Well incorporation of carbon nanodots with silicon nanowire arrays featuring excellent photocatalytic performances. Phys. Chem. Chem. Phys. 2017, 19, 11786–11792. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Fang, H.; Zhu, J. Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater. 2007, 19, 744–748. [Google Scholar] [CrossRef]
Characteristics | SiNWs | CQD/SiNWs | CQD/AgNP@SiNWs | CQD/AgNP@SiNWs (after Four-Time Photo Degradation Test) |
---|---|---|---|---|
Zeta potential (mV) | −15.2 | −38.1 | −56.6 | −53.9 |
Contact angle (°) | 59.8 ± 0.2 | 10.9 ± 0.1 | 2.1 ± 0.1 | 2.6 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, P.-H.; Timjan, S.; Kuo, K.-Y.; Juan, J.-C.; Chen, C.-Y. Optical Management of CQD/AgNP@SiNW Arrays with Highly Efficient Capability of Dye Degradation. Catalysts 2021, 11, 399. https://doi.org/10.3390/catal11030399
Hsiao P-H, Timjan S, Kuo K-Y, Juan J-C, Chen C-Y. Optical Management of CQD/AgNP@SiNW Arrays with Highly Efficient Capability of Dye Degradation. Catalysts. 2021; 11(3):399. https://doi.org/10.3390/catal11030399
Chicago/Turabian StyleHsiao, Po-Hsuan, Sasimontra Timjan, Kuan-Yi Kuo, Joon-Ching Juan, and Chia-Yun Chen. 2021. "Optical Management of CQD/AgNP@SiNW Arrays with Highly Efficient Capability of Dye Degradation" Catalysts 11, no. 3: 399. https://doi.org/10.3390/catal11030399
APA StyleHsiao, P. -H., Timjan, S., Kuo, K. -Y., Juan, J. -C., & Chen, C. -Y. (2021). Optical Management of CQD/AgNP@SiNW Arrays with Highly Efficient Capability of Dye Degradation. Catalysts, 11(3), 399. https://doi.org/10.3390/catal11030399