Advanced Two-Dimensional Heterojunction Photocatalysts of Stoichiometric and Non-Stoichiometric Bismuth Oxyhalides with Graphitic Carbon Nitride for Sustainable Energy and Environmental Applications
Abstract
:1. Introduction
2. Electronic Band Structure of BiOX, BixOyXz and g-C3N4
3. Fabrication of BiOX/BixOyXz-g-C3N4 Heterojunction Photocatalysts
3.1. In Situ Self-Assembly
3.2. Hydrothermal and Solvothermal Synthesis
3.3. Ionic Liquid-Assited Method
3.4. Precipitation Technique
3.5. Reflux Process
3.6. Solid-State Calcination
3.7. Sonochemical Synthesis
4. Photocatalytic Activity
4.1. Photocatalytic Degradation of Organic and Inorganic Contaminats
4.2. Carbon Dioxide Reduction
4.3. Hydrogen Generation
4.4. Oxygen Evolution
4.5. Nitrogen Reduction
4.6. Organic Synthesis
5. Strategies for Improving the Performance of BiOX/BixOyXz-g-C3N4 Heterojunction Photocatalysts
5.1. Microstructure Modulation
5.2. Facet and Defect Control
5.3. Integration with Noble Metal Nanostructures
5.4. Carbonaceous Materials Compounding
5.5. Integration of Other Semiconductor Nanostructures
5.6. Coupling BiOX and BiOY with g-C3N4
6. Conclusions and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Taylor, D. The Pharmaceutical Industry and the Future of Drug Development. Issues Environ. Sci. Technol. 2016, 2016, 1–33. [Google Scholar]
- Zhang, G.; Wang, J.; Zhang, H.; Zhang, T.; Jiang, S.; Li, B.; Zhang, H.; Cao, J. Facile Synthesize Hierarchical Tubular Micro-Nano Structured AgCl/Ag/TiO2 Hybrid with Favorable Visible Light Photocatalytic Performance. J. Alloys Compd. 2021, 855, 157512. [Google Scholar] [CrossRef]
- Zhang, Q.-Q.; Ying, G.-G.; Pan, C.-G.; Liu, Y.-S.; Zhao, J.-L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef] [PubMed]
- Bound, J.P.; Voulvoulis, N. Pharmaceuticals in the Aquatic Environment––A Comparison of Risk Assessment Strategies. Chemosphere 2004, 56, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.; Saxena, M.; Lochab, A. Recent Progress in Nanomaterials for Adsorptive Removal of Organic Contaminants from Wastewater. ChemistrySelect 2020, 5, 335–353. [Google Scholar] [CrossRef]
- Kanaujiya, D.K.; Paul, T.; Sinharoy, A.; Pakshirajan, K. Biological Treatment Processes for the Removal of Organic Micropollutants from Wastewater: A Review. Curr. Pollut. Rep. 2019, 5, 112–128. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Dong, S.; Feng, J.; Fan, M.; Pi, Y.; Hu, L.; Han, X.; Liu, M.; Sun, J.; Sun, J. Recent Developments in Heterogeneous Photocatalytic Water Treatment Using Visible Light-Responsive Photocatalysts: A Review. RSC Adv. 2015, 5, 14610–14630. [Google Scholar] [CrossRef]
- Chatterjee, D.; Dasgupta, S. Visible Light Induced Photocatalytic Degradation of Organic Pollutants. J. Photochem. Photobiol. C Photochem. Rev. 2005, 6, 186–205. [Google Scholar] [CrossRef]
- Bora, L.V.; Mewada, R.K. Visible/Solar Light Active Photocatalysts for Organic Effluent Treatment: Fundamentals, Mechanisms and Parametric Review. Renew. Sustain. Energy Rev. 2017, 76, 1393–1421. [Google Scholar] [CrossRef]
- Ong, W.-J.; Shak, K.P.Y. 2D/2D Heterostructured Photocatalysts: An Emerging Platform for Artificial Photosynthesis. Sol. Rrl 2020, 4, 2000132. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Xie, J. Graphene in Photocatalysis: A Review. Small 2016, 12, 6640–6696. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Li, H.; Guo, S.; Dai, S. Bismuth Oxyhalide Layered Materials for Energy and Environmental Applications. Nano Energy 2017, 41, 172–192. [Google Scholar] [CrossRef]
- Ye, L.; Su, Y.; Jin, X.; Xie, H.; Zhang, C. Recent Advances in BiOX (X = Cl, Br and I) Photocatalysts: Synthesis, Modification, Facet Effects and Mechanisms. Environ. Sci. Nano 2014, 1, 90–112. [Google Scholar] [CrossRef]
- Li, J.; Yu, Y.; Zhang, L. Bismuth Oxyhalide Nanomaterials: Layered Structures Meet Photocatalysis. Nanoscale 2014, 6, 8473–8488. [Google Scholar] [CrossRef]
- Gondal, M.A.; Xiaofeng, C.; Dastageer, M.A. Novel Bismuth-Oxyhalide-Based Materials and Their Applications, Advanced Structured Materials; Springer: New Delhi, India, 2017; Volume 76, ISBN 978-81-322-3737-2. [Google Scholar]
- Guo, M.; He, H.; Cao, J.; Lin, H.; Chen, S. Novel I-Doped Bi12O17Cl2 Photocatalysts with Enhanced Photocatalytic Activity for Contaminants Removal. Mater. Res. Bull. 2019, 112, 205–212. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Mishra, A.; Mehta, A.; Basu, S.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Graphitic Carbon Nitride (g–C3N4)–Based Metal-Free Photocatalysts for Water Splitting: A Review. Carbon 2019, 149, 693–721. [Google Scholar] [CrossRef]
- Yi, J.; El-Alami, W.; Song, Y.; Li, H.; Ajayan, P.M.; Xu, H. Emerging Surface Strategies on Graphitic Carbon Nitride for Solar Driven Water Splitting. Chem. Eng. J. 2020, 382, 122812. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Antonietti, M. Graphitic Carbon Nitride “Reloaded”: Emerging Applications beyond (Photo)Catalysis. Chem. Soc. Rev. 2016, 45, 2308–2326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, W.J. 2D/2D Graphitic Carbon Nitride (g-C3 N4) Heterojunction Nanocomposites for Photocatalysis: Why Does Face-to-Face Interface Matter? Front. Mater. 2017, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.; Zhang, J.; Wang, Y.; Ren, F. Hybrid Density Functional Study on the Mechanism for the Enhanced Photocatalytic Properties of the Ultrathin Hybrid Layered Nanocomposite G-C3N4/BiOCl. Appl. Surf. Sci. 2018, 435, 1351–1360. [Google Scholar] [CrossRef]
- Zheng, C.Z.; Zhang, C.Y.; Zhang, G.H.; Zhao, D.J.; Wang, Y.Z. Enhanced Photocatalytic Performance of G-C3N4 with BiOCl Quantum Dots Modification. Mater. Res. Bull. 2014, 55, 212–215. [Google Scholar] [CrossRef]
- Shi, S.; Gondal, M.A.; Al-Saadi, A.A.; Fajgar, R.; Kupcik, J.; Chang, X.; Shen, K.; Xu, Q.; Seddigi, Z.S. Facile Preparation of G-C3N4 Modified BiOCl Hybrid Photocatalyst and Vital Role of Frontier Orbital Energy Levels of Model Compounds in Photoactivity Enhancement. J. Colloid Interface Sci. 2014, 416, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, L.; Wang, L.; Hao, J.; Meng, X. Fabrication of Oxygen-Vacancy-Rich Black-BiOBr/BiOBr Heterojunction with Enhanced Photocatalytic Activity. J. Mater. Sci. 2020, 55, 10785–10795. [Google Scholar] [CrossRef]
- Yang, W.; Shan, X.; Chen, Y.; Gao, Y. Enhanced Photocatalytic Performance of C3N4 via Doping with π-Deficient Conjugated Pyridine Ring and BiOCl Composite Heterogeneous Materials. Diam. Relat. Mater. 2020, 108, 107926. [Google Scholar] [CrossRef]
- Song, L.; Zheng, Y.; Chen, C. Sonication-Assisted Deposition–Precipitation Synthesis of Graphitic C3N4/BiOCl Heterostructured Photocatalysts with Enhanced Rhodamine B Photodegradation Activity. J. Mater. Sci. Mater. Electron. 2017, 28, 15861–15869. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Z.; Yao, Y.; Li, Y.; Cheema, W.A.; Wang, D.; Zhu, S. Recent Advancements in G-C3N4-Based Photocatalysts for Photocatalytic CO2reduction: A Mini Review. RSC Adv. 2020, 10, 29408–29418. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, X.; Jiang, L.; Zhang, J.; Yu, H.; Wang, H.; Zeng, G. Powerful Combination of 2D G-C3N4 and 2D Nanomaterials for Photocatalysis: Recent Advances. Chem. Eng. J. 2020, 390, 124475. [Google Scholar] [CrossRef]
- Lam, S.S.; Nguyen, V.H.; Nguyen Dinh, M.T.; Khieu, D.Q.; La, D.D.; Nguyen, H.T.; Vo, D.V.N.; Xia, C.; Varma, R.S.; Shokouhimehr, M.; et al. Mainstream Avenues for Boosting Graphitic Carbon Nitride Efficiency: Towards Enhanced Solar Light-Driven Photocatalytic Hydrogen Production and Environmental Remediation. J. Mater. Chem. A 2020, 8, 10571–10603. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Liu, Y.; Alharbi, N.S.; Rabah, S.O.; Wang, S.; Wang, X. Synthesis and Fabrication of G-C3N4-Based Materials and Their Application in Elimination of Pollutants. Sci. Total Environ. 2020, 731, 139054. [Google Scholar] [CrossRef]
- Fronczak, M. Adsorption Performance of Graphitic Carbon Nitride-Based Materials: Current State of the Art. J. Environ. Chem. Eng. 2020, 8, 104411. [Google Scholar] [CrossRef]
- Stroyuk, O.; Raievska, O.; Zahn, D.R.T. Graphitic Carbon Nitride Nanotubes: A New Material for Emerging Applications. RSC Adv. 2020, 10, 34059–34087. [Google Scholar] [CrossRef]
- Kong, L.; Song, P.; Ma, F.; Sun, M. Graphitic Carbon Nitride-Based 2D Catalysts for Green Energy: Physical Mechanism and Applications. Mater. Today Energy 2020, 17, 100488. [Google Scholar] [CrossRef]
- Starukh, H.; Praus, P. Doping of Graphitic Carbon Nitride with Non-Metal Elements and Its Applications in Photocatalysis. Catalysts 2020, 10, 1119. [Google Scholar] [CrossRef]
- Huang, X.; Gu, W.; Ma, Y.; Liu, D.; Ding, N.; Zhou, L.; Lei, J.; Wang, L.; Zhang, J. Recent Advances of Doped Graphite Carbon Nitride for Photocatalytic Reduction of CO2: A Review. Res. Chem. Intermed. 2020, 46, 5133–5164. [Google Scholar] [CrossRef]
- Ismael, M. A Review on Graphitic Carbon Nitride (g-C3N4) Based Nanocomposites: Synthesis, Categories, and Their Application in Photocatalysis. J. Alloys Compd. 2020, 846, 156446. [Google Scholar] [CrossRef]
- Zhang, W.; Mohamed, A.R.; Ong, W. Z-Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now? Angew. Chem. Int. Ed. 2020, anie.201914925. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, M.; Cheng, B.; Shao, Y. Recent Advances in G-C3N4-Based Heterojunction Photocatalysts. J. Mater. Sci. Technol. 2020, 56, 1–17. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Zhang, H.; Fan, J.; Xiang, Q. Design and Application of Active Sites in G-C3N4-Based Photocatalysts. J. Mater. Sci. Technol. 2020, 56, 69–88. [Google Scholar] [CrossRef]
- Jourshabani, M.; Lee, B.K.; Shariatinia, Z. From Traditional Strategies to Z-Scheme Configuration in Graphitic Carbon Nitride Photocatalysts: Recent Progress and Future Challenges. Appl. Catal. B Environ. 2020, 276, 119157. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, R.; Khanuja, M. A Review and Recent Developments on Strategies to Improve the Photocatalytic Elimination of Organic Dye Pollutants by BiOX (X = Cl, Br, I, F) Nanostructures. Korean J. Chem. Eng. 2018, 35, 1955–1968. [Google Scholar] [CrossRef]
- Bismuth Oxyhalide Compounds as Photocatalysts--≪Progress in Chemistry≫. September 2009. Available online: https://en.cnki.com.cn/Article_en/CJFDTotal-HXJZ200909004.htm (accessed on 21 November 2020).
- Liu, J.Q.; Wu, Y.C. Recent Advances in the High Performance BiOX (X = Cl, Br, I) Based Photo-Catalysts. Wuji Cailiao Xuebao/J. Inorg. Mater. 2015, 30, 1009–1017. [Google Scholar]
- Cheng, H.; Huang, B.; Dai, Y. Engineering BiOX (X = Cl, Br, I) Nanostructures for Highly Efficient Photocatalytic Applications. Nanoscale 2014, 6, 2009–2026. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Y.; Dong, F. Graphitic Carbon Nitride Based Nanocomposites: A Review. Nanoscale 2015, 7, 15–37. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Z. Bismuth-Based Photocatalytic Semiconductors: Introduction, Challenges and Possible Approaches. J. Mol. Catal. A Chem. 2016, 423, 533–549. [Google Scholar] [CrossRef]
- Chen, Y.; Jia, G.; Hu, Y.; Fan, G.; Tsang, Y.H.; Li, Z.; Zou, Z. Two-Dimensional Nanomaterials for Photocatalytic CO2 Reduction to Solar Fuels. Sustain. Energy Fuels 2017, 1, 1875–1898. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Lai, C.; Zeng, G.; Huang, D.; Cheng, M.; Wang, J.; Chen, F.; Zhou, C.; Xiong, W. BiOX (X = Cl, Br, I) Photocatalytic Nanomaterials: Applications for Fuels and Environmental Management. Adv. Colloid Interface Sci. 2018, 254, 76–93. [Google Scholar] [CrossRef]
- Arthur, R.; Ahern, J.; Patterson, H. Application of BiOX Photocatalysts in Remediation of Persistent Organic Pollutants. Catalysts 2018, 8, 604. [Google Scholar] [CrossRef] [Green Version]
- Garg, S.; Yadav, M.; Chandra, A.; Hernadi, K. A Review on BiOX (X = Cl, Br and I) Nano-/Microstructures for Their Photocatalytic Applications. J. Nanosci. Nanotechnol. 2018, 19, 280–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, L.; Deng, Y.; Wang, L.; Xie, H.; Su, F. Bismuth-Based Photocatalysts for Solar Photocatalytic Carbon Dioxide Conversion. ChemSusChem 2019, 12, 3671–3701. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, M.; Huang, D.; Zeng, G.; Xu, P.; Zhou, C.; Lai, C.; Wang, H.; Cheng, M.; Wang, W. Multiply Structural Optimized Strategies for Bismuth Oxyhalide Photocatalysis and Their Environmental Application. Chem. Eng. J. 2019, 374, 1025–1045. [Google Scholar] [CrossRef]
- Sharma, K.; Dutta, V.; Sharma, S.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, P.; Singh, P. Recent Advances in Enhanced Photocatalytic Activity of Bismuth Oxyhalides for Efficient Photocatalysis of Organic Pollutants in Water: A Review. J. Ind. Eng. Chem. 2019, 78, 1–20. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, S.; Shi, R.; Waterhouse, G.I.N.; Tang, J.; Zhang, T. Two-Dimensional Photocatalyst Design: A Critical Review of Recent Experimental and Computational Advances. Mater. Today 2020, 34, 78–91. [Google Scholar] [CrossRef]
- Xiong, J.; Song, P.; Di, J.; Li, H. Bismuth-Rich Bismuth Oxyhalides: A New Opportunity to Trigger High-Efficiency Photocatalysis. J. Mater. Chem. A 2020, 8, 21434–21454. [Google Scholar] [CrossRef]
- Ren, K.; Liu, J.; Liang, J.; Zhang, K.; Zheng, X.; Luo, H.; Huang, Y.; Liu, P.; Yu, X. Synthesis of the Bismuth Oxyhalide Solid Solutions with Tunable Band Gap and Photocatalytic Activities. Dalton Trans. 2013, 42, 9706–9712. [Google Scholar] [CrossRef]
- Shi, L.; Si, W.; Wang, F.; Qi, W. Construction of 2D/2D Layered g-C3N4/Bi12O17Cl2 Hybrid Material with Matched Energy Band Structure and Its Improved Photocatalytic Performance. RSC Adv. 2018, 8, 24500–24508. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, J.; Liu, L.; Hu, B.; Zhao, Y.; Zhao, S.; Zhao, W.; Li, S.; Hai, X. Tailored Fabrication of Interface-Rich Hierarchical Bi24O31Br10 with Enhanced Photocatalytic Performance. Appl. Surf. Sci. 2019, 491, 1–8. [Google Scholar] [CrossRef]
- Yang, L.; Liang, L.; Wang, L.; Zhu, J.; Gao, S.; Xia, X. Accelerated Photocatalytic Oxidation of Carbamazepine by a Novel 3D Hierarchical Protonated G-C3N4/BiOBr Heterojunction: Performance and Mechanism. Appl. Surf. Sci. 2019, 473, 527–539. [Google Scholar] [CrossRef]
- Hu, L.; He, H.; Xia, D.; Huang, Y.; Xu, J.; Li, H.; He, C.; Yang, W.; Shu, D.; Wong, P.K. Highly Efficient Performance and Conversion Pathway of Photocatalytic CH3SH Oxidation on Self-Stabilized Indirect Z-Scheme g-C3N4/I3--BiOI. Acs Appl. Mater. Interfaces 2018, 10, 18693–18708. [Google Scholar] [CrossRef]
- Yin, R.; Li, Y.; Zhong, K.; Yao, H.; Zhang, Y.; Lai, K. Multifunctional Property Exploration: Bi4O5I2 with High Visible Light Photocatalytic Performance and a Large Nonlinear Optical Effect. Rsc Adv. 2019, 9, 4539–4544. [Google Scholar] [CrossRef] [Green Version]
- Di, J.; Zhu, C.; Ji, M.; Duan, M.; Long, R.; Yan, C.; Gu, K.; Xiong, J.; She, Y.; Xia, J.; et al. Defect-Rich Bi12O17Cl2 Nanotubes Self-Accelerating Charge Separation for Boosting Photocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2018, 57, 14847–14851. [Google Scholar] [CrossRef]
- Shang, J.; Hao, W.; Lv, X.; Wang, T.; Wang, X.; Du, Y.; Dou, S.; Xie, T.; Wang, D.; Wang, J. Bismuth Oxybromide with Reasonable Photocatalytic Reduction Activity under Visible Light. Acs Catal. 2014, 4, 954–961. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, T.; Wang, P.; Wang, L.; Ye, L. Bismuth-Rich Bi4O5X2 (X = Br, and I) Nanosheets with Dominant {1 0 1} Facets Exposure for Photocatalytic H2 Evolution. Chem. Eng. J. 2016, 304, 454–460. [Google Scholar] [CrossRef]
- Mi, Y.; Li, H.; Zhang, Y.; Hou, W. Synthesis of Belt-like Bismuth-Rich Bismuth Oxybromide Hierarchical Nanostructures with High Photocatalytic Activities. J. Colloid Interface Sci. 2019, 534, 301–311. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, I.F.; Barbosa, E.C.M.; Tsang, S.C.E.; Camargo, P.H.C. Carbon Nitrides and Metal Nanoparticles: From Controlled Synthesis to Design Principles for Improved Photocatalysis. Chem. Soc. Rev. 2018, 47, 7783–7817. [Google Scholar] [CrossRef]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A Review on G-C3 N4 -Based Photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Yan, S.C.; Lv, S.B.; Li, Z.S.; Zou, Z.G. Organic-Inorganic Composite Photocatalyst of g-C3N4 and TaON with Improved Visible Light Photocatalytic Activities. Dalton Trans. 2010, 39, 1488–1491. [Google Scholar] [CrossRef] [PubMed]
- Sudhaik, A.; Raizada, P.; Shandilya, P.; Jeong, D.-Y.; Lim, J.-H.; Singh, P. Review on Fabrication of Graphitic Carbon Nitride Based Efficient Nanocomposites for Photodegradation of Aqueous Phase Organic Pollutants. J. Ind. Eng. Chem. 2018, 67, 28–51. [Google Scholar] [CrossRef]
- Dong, G.; Zhang, Y.; Pan, Q.; Qiu, J. A Fantastic Graphitic Carbon Nitride (g-C3N4) Material: Electronic Structure, Photocatalytic and Photoelectronic Properties. J. Photochem. Photobiol. C Photochem. Rev. 2014, 20, 33–50. [Google Scholar] [CrossRef]
- You, Z.; Wu, C.; Shen, Q.; Yu, Y.; Chen, H.; Su, Y.; Wang, H.; Wu, C.; Zhang, F.; Yang, H. A Novel Efficient G-C3N4@BiOI p–n Heterojunction Photocatalyst Constructed through the Assembly of g-C3N4 Nanoparticles. Dalton Trans. 2018, 47, 7353–7361. [Google Scholar] [CrossRef]
- Rabenau, A. The Role of Hydrothermal Synthesis in Preparative Chemistry. Angew. Chem. Int. Ed. Engl. 1985, 24, 1026–1040. [Google Scholar] [CrossRef]
- Yang, Y.; Matsubara, S.; Xiong, L.; Hayakawa, T.; Nogami, M. Solvothermal Synthesis of Multiple Shapes of Silver Nanoparticles and Their SERS Properties. J. Phys. Chem. C 2007, 111, 9095–9104. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, C.; Hu, R.; Zuo, X.; Nan, J.; Li, L.; Wang, L. Oxygen-Rich Bismuth Oxyhalides: Generalized One-Pot Synthesis, Band Structures and Visible-Light Photocatalytic Properties. J. Mater. Chem. 2012, 22, 22840–22843. [Google Scholar] [CrossRef]
- Huo, Y.; Zhang, J.; Miao, M.; Jin, Y. Solvothermal Synthesis of Flower-like BiOBr Microspheres with Highly Visible-Light Photocatalytic Performances. Appl. Catal. B Environ. 2012, 111–112, 334–341. [Google Scholar] [CrossRef]
- Shi, X.; Chen, X.; Chen, X.; Zhou, S.; Lou, S.; Wang, Y.; Yuan, L. PVP Assisted Hydrothermal Synthesis of BiOBr Hierarchical Nanostructures and High Photocatalytic Capacity. Chem. Eng. J. 2013, 222, 120–127. [Google Scholar] [CrossRef]
- Li, H.; Ma, A.; Zhang, D.; Gao, Y.; Dong, Y. Rational Design Direct Z-Scheme BiOBr/g-C3N4 Heterojunction with Enhanced Visible Photocatalytic Activity for Organic Pollutants Elimination. Rsc Adv. 2020, 10, 4681–4689. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yu, J.; Jaroniec, M. Hierarchical Photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636. [Google Scholar] [CrossRef]
- Wang, S.; Hai, X.; Ding, X.; Chang, K.; Xiang, Y.; Meng, X.; Yang, Z.; Chen, H.; Ye, J. Light-Switchable Oxygen Vacancies in Ultrafine Bi5O7Br Nanotubes for Boosting Solar-Driven Nitrogen Fixation in Pure Water. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, H.; Liu, X.; Li, H.; Ren, C.; Li, X.; Li, W.; Lian, Z.; Zhang, M. Engineering Design of Hierarchical G-C3N4@Bi/BiOBr Ternary Heterojunction with Z-Scheme System for Efficient Visible-Light Photocatalytic Performance. J. Alloys Compd. 2019, 798, 741–749. [Google Scholar] [CrossRef]
- Ji, M.; Di, J.; Ge, Y.; Xia, J.; Li, H. 2D-2D Stacking of Graphene-like g-C3N4/Ultrathin Bi4O5Br2 with Matched Energy Band Structure towards Antibiotic Removal. Appl. Surf. Sci. 2017, 413, 372–380. [Google Scholar] [CrossRef]
- Wang, X.J.; Wang, Q.; Li, F.T.; Yang, W.Y.; Zhao, Y.; Hao, Y.J.; Liu, S.J. Novel BiOCl-C3N4 Heterojunction Photocatalysts: In Situ Preparation via an Ionic-Liquid-Assisted Solvent-Thermal Route and Their Visible-Light Photocatalytic Activities. Chem. Eng. J. 2013, 234, 361–371. [Google Scholar] [CrossRef]
- Xia, J.; Ji, M.; Di, J.; Wang, B.; Yin, S.; Zhang, Q.; He, M.; Li, H. Construction of Ultrathin C3N4/Bi4O5I2 Layered Nanojunctions via Ionic Liquid with Enhanced Photocatalytic Performance and Mechanism Insight. Appl. Catal. B Environ. 2016, 191, 235–245. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Yin, S.; Xu, H.; He, M.; Li, H.; Xu, L.; Jiang, Y. A G-C3N4/BiOBr Visible-Light-Driven Composite: Synthesis via a Reactable Ionic Liquid and Improved Photocatalytic Activity. RSC Adv. 2013, 3, 19624–19631. [Google Scholar] [CrossRef]
- Yin, S.; Di, J.; Li, M.; Sun, Y.; Xia, J.; Xu, H.; Fan, W.; Li, H. Ionic Liquid-Assisted Synthesis and Improved Photocatalytic Activity of p-n Junction g-C3N4/BiOCl. J. Mater. Sci. 2016, 51, 4769–4777. [Google Scholar] [CrossRef]
- Ren, X.; Gao, M.; Zhang, Y.; Zhang, Z.; Cao, X.; Wang, B.; Wang, X. Photocatalytic Reduction of CO2 on BiOX: Effect of Halogen Element Type and Surface Oxygen Vacancy Mediated Mechanism. Appl. Catal. B Environ. 2020, 274, 119063. [Google Scholar] [CrossRef]
- Aghdam, S.M.; Haghighi, M.; Allahyari, S.; Yosefi, L. Precipitation Dispersion of Various Ratios of BiOI/BiOCl Nanocomposite over g-C3N4 for Promoted Visible Light Nanophotocatalyst Used in Removal of Acid Orange 7 from Water. J. Photochem. Photobiol. A Chem. 2017, 338, 201–212. [Google Scholar] [CrossRef]
- Mousavi, M.; Habibi-Yangjeh, A. Magnetically Separable Ternary G-C3N4/Fe3O4/BiOI Nanocomposites: Novel Visible-Light-Driven Photocatalysts Based on Graphitic Carbon Nitride. J. Colloid Interface Sci. 2016, 465, 83–92. [Google Scholar] [CrossRef]
- Asadzadeh-Khaneghah, S.; Habibi-Yangjeh, A.; Yubuta, K. Novel G-C3N4 Nanosheets/CDs/BiOCl Photocatalysts with Exceptional Activity under Visible Light. J. Am. Ceram. Soc. 2019, 102, 1435–1453. [Google Scholar] [CrossRef]
- Asadzadeh-Khaneghah, S.; Habibi-Yangjeh, A.; Nakata, K. Graphitic Carbon Nitride Nanosheets Anchored with BiOBr and Carbon Dots: Exceptional Visible-Light-Driven Photocatalytic Performances for Oxidation and Reduction Reactions. J. Colloid Interface Sci. 2018, 530, 642–657. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Chisholm, M.F.; Zhong, J.; Chen, C.; Cao, X.; Dong, F.; Chi, Z.; Chen, H.; Weng, Y.; et al. Defect-Tailoring Mediated Electron–Hole Separation in Single-Unit-Cell Bi3O4 Br Nanosheets for Boosting Photocatalytic Hydrogen Evolution and Nitrogen Fixation. Adv. Mater. 2019, 31, 1807576. [Google Scholar] [CrossRef]
- Che, H.; Che, G.; Dong, H.; Hu, W.; Hu, H.; Liu, C.; Li, C. Fabrication of Z-Scheme Bi3O4Cl/g-C3N4 2D/2D Heterojunctions with Enhanced Interfacial Charge Separation and Photocatalytic Degradation Various Organic Pollutants Activity. Appl. Surf. Sci. 2018, 455, 705–716. [Google Scholar] [CrossRef]
- Bang, J.H.; Suslick, K.S. Applications of Ultrasound to the Synthesis of Nanostructured Materials. Adv. Mater. 2010, 22, 1039–1059. [Google Scholar] [CrossRef]
- Pereira, C.; Pereira, A.M.; Fernandes, C.; Rocha, M.; Mendes, R.; Fernández-García, M.P.; Guedes, A.; Tavares, P.B.; Grenéche, J.M.; Araújo, J.P.; et al. Superparamagnetic MFe 2O4 (M = Fe, Co, Mn) Nanoparticles: Tuning the Particle Size and Magnetic Properties through a Novel One-Step Coprecipitation Route. Chem. Mater. 2012, 24, 1496–1504. [Google Scholar] [CrossRef]
- Liu, X.; Ni, Z.; He, Y.; Su, N.; Guo, R.; Wang, Q.; Yi, T. Ultrasound-Assisted Two-Step Water-Bath Synthesis of g-C3N4/BiOBr Composites: Visible Light-Driven Photocatalysis, Sterilization, and Reaction Mechanism. New J. Chem. 2019, 43, 8711–8721. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Pillai, S.C.; Falaras, P.; O’shea, K.E.; Byrne, J.A.; Dionysiou, D.D. New Insights into the Mechanism of Visible Light Photocatalysis. J. Phys. Chem. Lett. 2014, 5, 2543–2554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di, J.; Xia, J.; Ji, M.; Yin, S.; Li, H.; Xu, H.; Zhang, Q.; Li, H. Controllable Synthesis of Bi4O5Br2 Ultrathin Nanosheets for Photocatalytic Removal of Ciprofloxacin and Mechanism Insight. J. Mater. Chem. A 2015, 3, 15108–15118. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhang, X.; Qiu, H.B.; Huang, G.X.; Yu, H.Q. Bi24O31Br10 Nanosheets with Controllable Thickness for Visible–Light–Driven Catalytic Degradation of Tetracycline Hydrochloride. Appl. Catal. B Environ. 2017, 205, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Liu, J.; Jiang, Z.; Peng, T.; Zan, L. Facets Coupling of BiOBr-g-C3N4 Composite Photocatalyst for Enhanced Visible-Light-Driven Photocatalytic Activity. Appl. Catal. B Environ. 2013, 142–143, 1–7. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Yin, S.; Xu, H.; Xu, L.; Xu, Y.; He, M.; Li, H. Preparation of Sphere-like g-C3N4/BiOI Photocatalysts via a Reactable Ionic Liquid for Visible-Light-Driven Photocatalytic Degradation of Pollutants. J. Mater. Chem. A 2014, 2, 5340–5351. [Google Scholar] [CrossRef]
- Liu, C.; Huang, H.; Du, X.; Zhang, T.; Tian, N.; Guo, Y.; Zhang, Y. In Situ Co-Crystallization for Fabrication of g-C3N4/Bi5O7I Heterojunction for Enhanced Visible-Light Photocatalysis. J. Phys. Chem. C 2015, 119, 17156–17165. [Google Scholar] [CrossRef]
- Geng, X.; Chen, S.; Lv, X.; Jiang, W.; Wang, T. Synthesis of G-C3N4/Bi5O7I Microspheres with Enhanced Photocatalytic Activity under Visible Light. Appl. Surf. Sci. 2018, 462, 18–28. [Google Scholar] [CrossRef]
- Zhou, M.; Wu, J.; Wang, H.; Guan, D.; Dong, X.; Wang, J.; Jia, T.; Liu, Q. Fabrication of Z-Scheme Heterojunction g-C3N4/Yb3+-Bi5O7I Photocatalysts with Enhanced Photocatalytic Performance under Visible Irradiation for Hg0Removal. Energy Fuels 2020, 34, 16445–16455. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, Z.; Guo, Y.; Wong, P.K.; Zhou, X.; Bai, R. In-Situ Growth of All-Solid Z-Scheme Heterojunction Photocatalyst of Bi7O9I3/g-C3N4 and High Efficient Degradation of Antibiotic under Visible Light. Appl. Catal. B Environ. 2020, 261, 118212. [Google Scholar] [CrossRef]
- Feng, Z.; Zeng, L.; Zhang, Q.; Ge, S.; Zhao, X.; Lin, H.; He, Y. In Situ Preparation of G-C3N4/Bi4O5I2 Complex and Its Elevated Photoactivity in Methyl Orange Degradation under Visible Light. J. Environ. Sci. 2020, 87, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, L.; Xiao, M.; Liu, F.; Xu, X.; Du, E. Construction of Direct Solid-State Z-Scheme g-C3N4/BiOI with Improved Photocatalytic Activity for Microcystin-LR Degradation. J. Mater. Res. 2018, 33, 201–212. [Google Scholar] [CrossRef]
- Tian, N.; Huang, H.; Wang, S.; Zhang, T.; Du, X.; Zhang, Y. Facet-Charge-Induced Coupling Dependent Interfacial Photocharge Separation: A Case of BiOI/g-C3N4 p-n Junction. Appl. Catal. B Environ. 2020, 267, 118697. [Google Scholar] [CrossRef]
- He, R.; Cheng, K.; Wei, Z.; Zhang, S.; Xu, D. Room-Temperature in Situ Fabrication and Enhanced Photocatalytic Activity of Direct Z-Scheme BiOI/g-C3N4 Photocatalyst. Appl. Surf. Sci. 2019, 465, 964–972. [Google Scholar] [CrossRef]
- An, H.; Lin, B.; Xue, C.; Yan, X.; Dai, Y.; Wei, J.; Yang, G. Formation of BiOI/g-C3N4 Nanosheet Composites with High Visible-Light-Driven Photocatalytic Activity. Chin. J. Catal. 2018, 39, 654–663. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, J.; Wang, Z.; Cheng, B.; Dai, K.; Ho, W. Direct Z-Scheme Porous g-C3N4/BiOI Heterojunction for Enhanced Visible-Light Photocatalytic Activity. J. Alloys Compd. 2018, 766, 841–850. [Google Scholar] [CrossRef]
- Jiang, J.; Mu, Z.; Zhao, P.; Wang, H.; Lin, Y. Photogenerated Charge Behavior of BiOI/g-C3N4 Photocatalyst in Photoreduction of Cr (VI): A Novel Understanding for High-Performance. Mater. Chem. Phys. 2020, 252, 123194. [Google Scholar] [CrossRef]
- Liu, W.; Qiao, L.; Zhu, A.; Liu, Y.; Pan, J. Constructing 2D BiOCl/C3N4 Layered Composite with Large Contact Surface for Visible-Light-Driven Photocatalytic Degradation. Appl. Surf. Sci. 2017, 426, 897–905. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; Zhong, L.; Liu, D.; Cao, X.; Cui, F. Oxygen Vacancy-Rich 2D/2D BiOCl-g-C3N4 Ultrathin Heterostructure Nanosheets for Enhanced Visible-Light-Driven Photocatalytic Activity in Environmental Remediation. Appl. Catal. B Environ. 2018, 220, 290–302. [Google Scholar] [CrossRef]
- Song, L.; Pang, Y.; Zheng, Y.; Ge, L. Hydrothermal Synthesis of Novel G-C3N4/BiOCl Heterostructure Nanodiscs for Efficient Visible Light Photodegradation of Rhodamine B. Appl. Phys. A 2017, 123, 500. [Google Scholar] [CrossRef]
- Zhang, X.; An, D.; Feng, D.; Liang, F.; Chen, Z.; Liu, W.; Yang, Z.; Xian, M. In Situ Surfactant-Free Synthesis of Ultrathin BiOCl/g-C3N4 Nanosheets for Enhanced Visible-Light Photodegradation of Rhodamine B. Appl. Surf. Sci. 2019, 476, 706–715. [Google Scholar] [CrossRef]
- Hou, W.; Deng, C.; Xu, H.; Li, D.; Zou, Z.; Xia, H.; Xia, D. N–p BiOCl@g-C3 N4 Heterostructure with Rich-oxygen Vacancies for Photodegradation of Carbamazepine. ChemistrySelect 2020, 5, 2767–2777. [Google Scholar] [CrossRef]
- Al Marzouqi, F.; Al Farsi, B.; Kuvarega, A.T.; Al Lawati, H.A.J.; Al Kindy, S.M.Z.; Kim, Y.; Selvaraj, R. Controlled Microwave-Assisted Synthesis of the 2D-BiOCl/2D-g-C3 N4 Heterostructure for the Degradation of Amine-Based Pharmaceuticals under Solar Light Illumination. ACS Omega 2019, 4, 4671–4678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Wu, Q.; Ji, M.; Zhu, H.; Hou, H.; Yang, Q.; Jiang, C.; Wang, J.; Tian, L.; Chen, J.; et al. Constructing Z-Scheme Charge Separation in 2D Layered Porous BiOBr/Graphitic C3N4 Nanosheets Nanojunction with Enhanced Photocatalytic Activity. J. Alloys Compd. 2017, 723, 1121–1131. [Google Scholar] [CrossRef]
- Wu, J.; Xie, Y.; Ling, Y.; Dong, Y.; Li, J.; Li, S.; Zhao, J. Synthesis of Flower-Like g-C3N4/BiOBr and Enhancement of the Activity for the Degradation of Bisphenol A Under Visible Light Irradiation. Front. Chem. 2019, 7, 649. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Shi, Y.; Huang, J.; Wang, L.; She, H.; Tong, J.; Su, B.; Wang, Q. Synthesis of Flowerlike G-C3N4/BiOBr with Enhanced Visible Light Photocatalytic Activity for Dye Degradation. Eur. J. Inorg. Chem. 2018, 2018, 1834–1841. [Google Scholar] [CrossRef]
- Zhou, M.; Huang, W.; Zhao, Y.; Jin, Z.; Hua, X.; Li, K.; Tang, L.; Cai, Z. 2D G-C3N4/BiOBr Heterojunctions with Enhanced Visible Light Photocatalytic Activity. J. Nanoparticle Res. 2020, 22, 13. [Google Scholar] [CrossRef]
- Lv, J.; Dai, K.; Zhang, J.; Liu, Q.; Liang, C.; Zhu, G. Facile Constructing Novel 2D Porous G-C3N4/BiOBr Hybrid with Enhanced Visible-Light-Driven Photocatalytic Activity. Sep. Purif. Technol. 2017, 178, 6–17. [Google Scholar] [CrossRef]
- Kanagaraj, T.; Thiripuranthagan, S.; Paskalis, S.M.K.; Abe, H. Visible Light Photocatalytic Activities of Template Free Porous Graphitic Carbon Nitride—BiOBr Composite Catalysts towards the Mineralization of Reactive Dyes. Appl. Surf. Sci. 2017, 426, 1030–1045. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, L.; Tian, Y.; Yu, J.; Lei, J.; Wang, L.; Liu, Y.; Zhang, J. Z-Scheme Inverse Opal CN/BiOBr Photocatalysts for Highly Efficient Degradation of Antibiotics. Phys. Chem. Chem. Phys. 2019, 21, 12818–12825. [Google Scholar] [CrossRef]
- Dong, Z.; Pan, J.; Wang, B.; Jiang, Z.; Zhao, C.; Wang, J.; Song, C.; Zheng, Y.; Cui, C.; Li, C. The P-n-Type Bi5O7I-Modified Porous C3N4 Nano-Heterojunction for Enhanced Visible Light Photocatalysis. J. Alloys Compd. 2018, 747, 788–795. [Google Scholar] [CrossRef]
- Salimi, M.; Esrafili, A.; Sobhi, H.R.; Behbahani, M.; Gholami, M.; Farzadkia, M.; Jafari, A.J.; Kalantary, R.R. Photocatalytic Degradation of Metronidazole Using D-g-C3N4-Bi5O7I Composites Under Visible Light Irradiation: Degradation Product, and Mechanisms. ChemistrySelect 2019, 4, 10288–10295. [Google Scholar] [CrossRef]
- Tian, N.; Zhang, Y.; Liu, C.; Yu, S.; Li, M.; Huang, H. G-C3N4/Bi4O5I2 2D-2D Heterojunctional Nanosheets with Enhanced Visible-Light Photocatalytic Activity. RSC Adv. 2016, 6, 10895–10903. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Y.; Feng, Z.; Zeng, L.; Chen, Q.; Jin, R.; Lu, Y.; Huang, Y.; Wu, Y.; He, Y. Preparation, Characterization of Bi3O4Cl/g-C3N4 Composite and Its Photocatalytic Activity in Dye Degradation. J. Water Process Eng. 2017, 18, 65–72. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, M.; Di, J.; Ge, Y.; Zhang, P.; Xia, J.; Li, H. Synthesis of G-C3N4/Bi4O5Br2 via Reactable Ionic Liquid and Its Cooperation Effect for the Enhanced Photocatalytic Behavior towards Ciprofloxacin Degradation. J. Photochem. Photobiol. A Chem. 2017, 347, 168–176. [Google Scholar] [CrossRef]
- Yi, F.; Ma, J.; Lin, C.; Wang, L.; Zhang, H.; Qian, Y.; Zhang, K. Insights into the Enhanced Adsorption/Photocatalysis Mechanism of a Bi4O5Br2/g-C3N4 Nanosheet. J. Alloys Compd. 2020, 821, 153557. [Google Scholar] [CrossRef]
- Jiang, J.; Song, Y.; Wang, X.; Li, T.; Li, M.; Lin, Y.; Xie, T.; Dong, S. Enhancing Aqueous Pollutant Photodegradation via a Fermi Level Matched Z-Scheme BiOI/Pt/g-C3N4 Photocatalyst: Unobstructed Photogenerated Charge Behavior and Degradation Pathway Exploration. Catal. Sci. Technol. 2020, 10, 3324–3333. [Google Scholar] [CrossRef]
- Li, Z.; Jin, C.; Lv, C.; Wang, M.; Kang, J.; Liu, S.; Xie, Y.; Zhu, T. Construction of G-C3N4/Eu(III) Doped Bi24O31Cl10 Heterojunction for the Enhanced Visible-Light Photocatalytic Performance. Mater. Chem. Phys. 2019, 237, 121829. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Guo, C.; Feng, L.; Li, C.; Wang, W. Facile Constructing Plasmonic Z-Scheme Au NPs/g-C3N4/BiOBr for Enhanced Visible Light Photocatalytic Activity. J. Fuel Chem. Technol. 2019, 47, 834–842. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, T.; Wang, P.; Wang, L.; Ye, L.; Shi, X.; Bai, W. Size-Dependent Role of Gold in g-C3N4/BiOBr/Au System for Photocatalytic CO2 Reduction and Dye Degradation. Sol. Energy Mater. Sol. Cells 2016, 157, 406–414. [Google Scholar] [CrossRef]
- Asadzadeh-Khaneghah, S.; Habibi-Yangjeh, A.; Seifzadeh, D. Graphitic Carbon Nitride Nanosheets Coupled with Carbon Dots and BiOI Nanoparticles: Boosting Visible-Light-Driven Photocatalytic Activity. J. Taiwan Inst. Chem. Eng. 2018, 87, 98–111. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Huang, L.; Zhang, F.; Wang, H.; Wang, C.; Zhang, Y.; Xie, M.; Li, H. Enhanced Photocatalytic Degradation and Antibacterial Performance by GO/CN/BiOI Composites under LED Light. Appl. Surf. Sci. 2019, 497, 143753. [Google Scholar] [CrossRef]
- You, Z.; Shen, Q.; Su, Y.; Yu, Y.; Wang, H.; Qin, T.; Zhang, F.; Cheng, D.; Yang, H. Construction of a Z-Scheme Core–Shell g-C3N4/MCNTs/BiOI Nanocomposite Semiconductor with Enhanced Visible-Light Photocatalytic Activity. New J. Chem. 2017, 42, 489–496. [Google Scholar] [CrossRef]
- Hu, X.; Hu, J.; Peng, Q.; Ma, X.; Dong, S.; Wang, H. Construction of 2D All-Solid-State Z-Scheme g-C3N4/BiOI/RGO Hybrid Structure Immobilized on Ni Foam for CO2 Reduction and Pollutant Degradation. Mater. Res. Bull. 2020, 122, 110682. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, K. Novel Z-Scheme BiOBr/Reduced Graphene Oxide/Protonated g-C3N4 Photocatalyst: Synthesis, Characterization, Visible Light Photocatalytic Activity and Mechanism. Appl. Surf. Sci. 2018, 437, 51–61. [Google Scholar] [CrossRef]
- Zhang, M.; Lai, C.; Li, B.; Huang, D.; Zeng, G.; Xu, P.; Qin, L.; Liu, S.; Liu, X.; Yi, H.; et al. Rational Design 2D/2D BiOBr/CDs/g-C3N4 Z-Scheme Heterojunction Photocatalyst with Carbon Dots as Solid-State Electron Mediators for Enhanced Visible and NIR Photocatalytic Activity: Kinetics, Intermediates, and Mechanism Insight. J. Catal. 2019, 369, 469–481. [Google Scholar] [CrossRef]
- Yu, X.; Wu, P.; Qi, C.; Shi, J.; Feng, L.; Li, C.; Wang, L. Ternary-Component Reduced Graphene Oxide Aerogel Constructed by g-C3N4/BiOBr Heterojunction and Graphene Oxide with Enhanced Photocatalytic Performance. J. Alloys Compd. 2017, 729, 162–170. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Y.; Shen, X.; Duoerkun, G.; Zhu, B.; Zhang, L.; Li, M.; Chen, Z. Fabrication of G-C3N4/BiOBr Heterojunctions on Carbon Fibers as Weaveable Photocatalyst for Degrading Tetracycline Hydrochloride under Visible Light. Chem. Eng. J. 2020, 386, 124010. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, X.; Vadivel, S.; Paul, B. Anchoring Carbon Spheres on BiOBr/g-C3N4 Matrix for High-Performance Visible Light Photocatalysis. Ceram. Int. 2018, 44, 23320–23323. [Google Scholar] [CrossRef]
- Li, J.; Yu, X.; Zhu, Y.; Fu, X.; Zhang, Y. 3D-2D-3D BiOI/Porous g-C3N4/Graphene Hydrogel Composite Photocatalyst with Synergy of Adsorption-Photocatalysis in Static and Flow Systems. J. Alloys Compd. 2021, 850, 156778. [Google Scholar] [CrossRef]
- Zhou, X.; Shao, C.; Yang, S.; Li, X.; Guo, X.; Wang, X.; Li, X.; Liu, Y. Heterojunction of G-C3N4/BiOI Immobilized on Flexible Electrospun Polyacrylonitrile Nanofibers: Facile Preparation and Enhanced Visible Photocatalytic Activity for Floating Photocatalysis. Acs Sustain. Chem. Eng. 2018, 6, 2316–2323. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, X.; Shao, C.; Li, X.; Liu, Y. Graphitic Carbon Nitride/BiOI Loaded on Electrospun Silica Nanofibers with Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2018, 455, 952–962. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, X.; Zhang, K.; Lu, P.; Zhang, D. Facile Fabrication of Sandwich-like BiOI/AgI/g-C3N4 Composites for Efficient Photocatalytic Degradation of Methyl Orange and Reduction of Cr(VI). J. Nanoparticle Res. 2018, 20, 328. [Google Scholar] [CrossRef]
- Jiang, X.; Lai, S.; Xu, W.; Fang, J.; Chen, X.; Beiyuan, J.; Zhou, X.; Lin, K.; Liu, J.; Guan, G. Novel Ternary BiOI/g-C3N4/CeO2 Catalysts for Enhanced Photocatalytic Degradation of Tetracycline under Visible-Light Radiation via Double Charge Transfer Process. J. Alloys Compd. 2019, 809, 151804. [Google Scholar] [CrossRef]
- Gholizadeh Khasevani, S.; Gholami, M.R. Engineering a Highly Dispersed Core@shell Structure for Efficient Photocatalysis: A Case Study of Ternary Novel BiOI@MIL-88A(Fe)@g-C3N4 Nanocomposite. Mater. Res. Bull. 2018, 106, 93–102. [Google Scholar] [CrossRef]
- Kang, J.; Jin, C.; Li, Z.; Wang, M.; Chen, Z.; Wang, Y. Dual Z-Scheme MoS2/g-C3N4/Bi24O31Cl10 Ternary Heterojunction Photocatalysts for Enhanced Visible-Light Photodegradation of Antibiotic. J. Alloys Compd. 2020, 825, 153975. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, A.; Wang, Y.; Lv, C.; Zhu, W.; Dou, S.; Wang, Q.; Zhong, Q. Accessible Fabrication and Mechanism Insight of Heterostructured BiOCl/Bi2MoO6/g-C3N4 Nanocomposites with Efficient Photosensitized Activity. J. Alloys Compd. 2017, 726, 164–172. [Google Scholar] [CrossRef]
- Bellamkonda, S.; Ranga Rao, G. Nanojunction-Mediated Visible Light Photocatalytic Enhancement in Heterostructured Ternary BiOCl/ CdS/g-C3N4 Nanocomposites. Catal. Today 2019, 321–322, 18–25. [Google Scholar] [CrossRef]
- Dong, X.; Sun, Z.; Zhang, X.; Li, C.; Zheng, S. Construction of BiOCl/g-C3N4/Kaolinite Composite and Its Enhanced Photocatalysis Performance under Visible-Light Irradiation. J. Taiwan Inst. Chem. Eng. 2018, 84, 203–211. [Google Scholar] [CrossRef]
- He, B.; Du, Y.; Feng, Y.; Du, M.; Wang, J.; Qu, J.; Liu, Y.; Jiang, N.; Wang, J.; Sun, X. Fabrication of Novel Ternary Direct Z-Scheme + isotype Heterojunction Photocatalyst g-C3N4/g-C3N4/BiOBr with Enhanced Photocatalytic Performance. Appl. Surf. Sci. 2020, 506, 145031. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, F.; Huo, P.; Zulfiqarc, S.; Xu, J.; Yan, Y.; Tang, H. Constructing Novel Visible-Light-Driven Ternary Photocatalyst of AgBr Nanoparticles Decorated 2D/2D Heterojunction of g-C3N4/BiOBr Nanosheets with Remarkably Enhanced Photocatalytic Activity for Water-Treatment. Ceram. Int. 2019, 45, 19197–19205. [Google Scholar] [CrossRef]
- Liu, N.; Xie, H.; Li, J.; Zhao, Y.; Wang, N. Synthesis and High Visible Light Photocatalytic Activity of Ternary Brookite-g-C3N4-BiOBr Composite. Nano 2020, 15, 2050045. [Google Scholar] [CrossRef]
- Zhong, S.; Zhou, H.; Shen, M.; Yao, Y.; Gao, Q. Rationally Designed a G-C3N4/BiOI/Bi2O2CO3 Composite with Promoted Photocatalytic Activity. J. Alloys Compd. 2021, 853, 157307. [Google Scholar] [CrossRef]
- Chou, S.-Y.; Chen, C.-C.; Dai, Y.-M.; Lin, J.-H.; Lee, W.W. Novel Synthesis of Bismuth Oxyiodide/Graphitic Carbon Nitride Nanocomposites with Enhanced Visible-Light Photocatalytic Activity. RSC Adv. 2016, 6, 33478–33491. [Google Scholar] [CrossRef]
- Liu, B.; Han, X.; Wang, Y.; Fan, X.; Wang, Z.; Zhang, J.; Shi, H. Synthesis of G-C3N4/BiOI/BiOBr Heterostructures for Efficient Visible-Light-Induced Photocatalytic and Antibacterial Activity. J. Mater. Sci. Mater. Electron. 2018, 29, 14300–14310. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, Y. Facile Synthesis of Ternary G-C3N4@BiOCl/Bi12O17Cl2 Composites with Excellent Visible Light Photocatalytic Activity for NO Removal. Front. Chem. 2019, 7, 231. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Sharma, G.; Al-Muhtaseb, A.H.; Naushad, M.U.; Ghfar, A.A.; Stadler, F.J. Quaternary Magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 Nano-Junction for Visible Light and Solar Powered Degradation of Sulfamethoxazole from Aqueous Environment. Chem. Eng. J. 2018, 334, 462–478. [Google Scholar] [CrossRef]
- Yuan, D.; Huang, L.; Li, Y.; Xu, Y.; Xu, H.; Huang, S.; Yan, J.; He, M.; Li, H. Synthesis and Photocatalytic Activity of G-C3N4/BiOI/BiOBr Ternary Composites. RSC Adv. 2016, 6, 41204–41213. [Google Scholar] [CrossRef]
- Qu, J.; Du, Y.; Feng, Y.; Wang, J.; He, B.; Du, M.; Liu, Y.; Jiang, N. Visible-Light-Responsive K-Doped g-C3N4/BiOBr Hybrid Photocatalyst with Highly Efficient Degradation of Rhodamine B and Tetracycline. Mater. Sci. Semicond. Process. 2020, 112, 105023. [Google Scholar] [CrossRef]
- Guo, F.; Chen, J.; Zhao, J.; Chen, Z.; Xia, D.; Zhan, Z.; Wang, Q. Z-Scheme Heterojunction g-C3N4@PDA/BiOBr with Biomimetic Polydopamine as Electron Transfer Mediators for Enhanced Visible-Light Driven Degradation of Sulfamethoxazole. Chem. Eng. J. 2020, 386, 124014. [Google Scholar] [CrossRef]
- Li, H.; Ai, Z.; Zhang, L. Surface Structure-Dependent Photocatalytic O2 Activation for Pollutant Removal with Bismuth Oxyhalides. Chem. Commun. 2020, 56, 15282. [Google Scholar] [CrossRef]
- Ye, L.; Jin, X.; Ji, X.; Liu, C.; Su, Y.; Xie, H.; Liu, C. Facet-Dependent Photocatalytic Reduction of CO2 on BiOI Nanosheets. Chem. Eng. J. 2016, 291, 39–46. [Google Scholar] [CrossRef]
- Ye, L.; Wang, H.; Jin, X.; Su, Y.; Wang, D.; Xie, H.; Liu, X.; Liu, X. Synthesis of Olive-Green Few-Layered BiOI for Efficient Photoreduction of CO2 into Solar Fuels under Visible/near-Infrared Light. Sol. Energy Mater. Sol. Cells 2016, 144, 732–739. [Google Scholar] [CrossRef]
- Yu, H.; Huang, H.; Xu, K.; Hao, W.; Guo, Y.; Wang, S.; Shen, X.; Pan, S.; Zhang, Y. Liquid-Phase Exfoliation into Monolayered BiOBr Nanosheets for Photocatalytic Oxidation and Reduction. ACS Sustain. Chem. Eng. 2017, 5, 10499–10508. [Google Scholar] [CrossRef]
- Kong, X.Y.; Ng, B.J.; Tan, K.H.; Chen, X.; Wang, H.; Mohamed, A.R.; Chai, S.P. Simultaneous Generation of Oxygen Vacancies on Ultrathin BiOBr Nanosheets during Visible-Light-Driven CO2 Photoreduction Evoked Superior Activity and Long-Term Stability. Catal. Today 2018, 314, 20–27. [Google Scholar] [CrossRef]
- Kong, X.Y.; Lee, W.P.C.; Ong, W.-J.; Chai, S.-P.; Mohamed, A.R. Oxygen-Deficient BiOBr as a Highly Stable Photocatalyst for Efficient CO2 Reduction into Renewable Carbon-Neutral Fuels. ChemCatChem 2016, 8, 3074–3081. [Google Scholar] [CrossRef]
- Gao, M.; Yang, J.; Sun, T.; Zhang, Z.; Zhang, D.; Huang, H.; Lin, H.; Fang, Y.; Wang, X. Persian Buttercup-like BiOBrxCl1-x Solid Solution for Photocatalytic Overall CO2 Reduction to CO and O2. Appl. Catal. B Environ. 2019, 243, 734–740. [Google Scholar] [CrossRef]
- Jin, J.; Wang, Y.; He, T. Preparation of Thickness-Tunable BiOCl Nanosheets with High Photocatalytic Activity for Photoreduction of CO2. RSC Adv. 2015, 5, 100244–100250. [Google Scholar] [CrossRef]
- Ma, Z.; Li, P.; Ye, L.; Zhou, Y.; Su, F.; Ding, C.; Xie, H.; Bai, Y.; Wong, P.K. Oxygen Vacancies Induced Exciton Dissociation of Flexible BiOCl Nanosheets for Effective Photocatalytic CO2 Conversion. J. Mater. Chem. A 2017, 5, 24995–25004. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Jiang, D.; Gao, E.; Sun, S. Photoreduction of CO2 on BiOCl Nanoplates with the Assistance of Photoinduced Oxygen Vacancies. Nano Res. 2015, 8, 821–831. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, P.; Wang, P.; Xie, H.; Dang, H.; Ye, L. Semimetal Bismuth Mediated UV–Vis-IR Driven Photo-Thermocatalysis of Bi4O5I2 for Carbon Dioxide to Chemical Energy. J. Co2 Util. 2018, 23, 51–60. [Google Scholar] [CrossRef]
- Ye, L.; Jin, X.; Liu, C.; Ding, C.; Xie, H.; Chu, K.H.; Wong, P.K. Thickness-Ultrathin and Bismuth-Rich Strategies for BiOBr to Enhance Photoreduction of CO2 into Solar Fuels. Appl. Catal. B Environ. 2016, 187, 281–290. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, P.; Wang, L.; Yang, B.; Xie, H.; Zhou, Y.; Ye, L. Ultrathin Bi4O5Br2 Nanosheets for Selective Photocatalytic CO2 Conversion into CO. Chem. Eng. J. 2019, 360, 473–482. [Google Scholar] [CrossRef]
- Ding, C.; Ye, L.; Zhao, Q.; Zhong, Z.; Liu, K.; Xie, H.; Bao, K.; Zhang, X.; Huang, Z. Synthesis of BixOyIz from Molecular Precursor and Selective Photoreduction of CO2 into CO. J. Co2 Util. 2016, 14, 135–142. [Google Scholar] [CrossRef]
- Bai, Y.; Ye, L.; Wang, L.; Shi, X.; Wang, P.; Bai, W.; Wong, P.K. G-C3N4/Bi4O5I2 Heterojunction with I3-/I- Redox Mediator for Enhanced Photocatalytic CO2 Conversion. Appl. Catal. B Environ. 2016, 194, 98–104. [Google Scholar] [CrossRef]
- Wang, J.-C.; Yao, H.-C.; Fan, Z.-Y.; Zhang, L.; Wang, J.-S.; Zang, S.-Q.; Li, Z.-J. Indirect Z-Scheme BiOI/g-C3N4 Photocatalysts with Enhanced Photoreduction CO2 Activity under Visible Light Irradiation. ACS Appl. Mater. Interfaces 2016, 8, 3765–3775. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, F.; Cao, Y.; Zhang, F.; Zou, Y.; Huang, Z.; Ye, L.; Zhou, Y. Interfacial Oxygen Vacancy Engineered Two-Dimensional g-C3N4/BiOCl Heterostructures with Boosted Photocatalytic Conversion of CO2. ACS Appl. Energy Mater. 2020. [Google Scholar] [CrossRef]
- Ayyub, M.M.; Singh, R.; Rao, C.N.R. Hydrogen Generation by Solar Water Splitting Using 2D Nanomaterials. Sol. Rrl 2020, 4, 2000050. [Google Scholar] [CrossRef]
- Pan, H.X.; Feng, L.P.; Zeng, W.; Zhang, Q.C.; Zhang, X.D.; Liu, Z.T. Active Sites in Single-Layer BiOX (X = Cl, Br, and I) Catalysts for the Hydrogen Evolution Reaction. Inorg. Chem. 2019, 58, 13195–13202. [Google Scholar] [CrossRef]
- Fang, W.; Shangguan, W. A Review on Bismuth-Based Composite Oxides for Photocatalytic Hydrogen Generation. Int. J. Hydrog. Energy 2019, 44, 895–912. [Google Scholar] [CrossRef]
- Jin, X.; Ye, L.; Xie, H.; Chen, G. Bismuth-Rich Bismuth Oxyhalides for Environmental and Energy Photocatalysis. Coord. Chem. Rev. 2017, 349, 84–101. [Google Scholar] [CrossRef]
- Ye, L.; Jin, X.; Leng, Y.; Su, Y.; Xie, H.; Liu, C. Synthesis of Black Ultrathin BiOCl Nanosheets for Efficient Photocatalytic H2 Production under Visible Light Irradiation. J. Power Sources 2015, 293, 409–415. [Google Scholar] [CrossRef]
- Li, M.; Yu, S.; Huang, H.; Li, X.; Feng, Y.; Wang, C.; Wang, Y.; Ma, T.; Guo, L.; Zhang, Y. Unprecedented Eighteen-Faceted BiOCl with a Ternary Facet Junction Boosting Cascade Charge Flow and Photo-redox. Angew. Chem. Int. Ed. 2019, 58, 9517–9521. [Google Scholar] [CrossRef]
- Lee, G.J.; Zheng, Y.C.; Wu, J.J. Fabrication of Hierarchical Bismuth Oxyhalides (BiOX, X = Cl, Br, I) Materials and Application of Photocatalytic Hydrogen Production from Water Splitting. Catal. Today 2018, 307, 197–204. [Google Scholar] [CrossRef]
- Li, J.; Zhan, G.; Yu, Y.; Zhang, L. Superior Visible Light Hydrogen Evolution of Janus Bilayer Junctions via Atomic-Level Charge Flow Steering. Nat. Commun. 2016, 7, 11480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.F.; Liu, Z.P.; Liu, L.; Gao, W. Mechanism and Activity of Photocatalytic Oxygen Evolution on Titania Anatase in Aqueous Surroundings. J. Am. Chem. Soc. 2010, 132, 13008–13015. [Google Scholar] [CrossRef]
- Di, J.; Chen, C.; Yang, S.Z.; Ji, M.; Yan, C.; Gu, K.; Xia, J.; Li, H.; Li, S.; Liu, Z. Defect Engineering in Atomically-Thin Bismuth Oxychloride towards Photocatalytic Oxygen Evolution. J. Mater. Chem. A 2017, 5, 14144–14151. [Google Scholar] [CrossRef]
- Bai, L.; Ye, F.; Li, L.; Lu, J.; Zhong, S.; Bai, S. Facet Engineered Interface Design of Plasmonic Metal and Cocatalyst on BiOCl Nanoplates for Enhanced Visible Photocatalytic Oxygen Evolution. Small 2017, 13, 1701607. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Wang, L.; Xu, K.; Ren, L.; Weng, L.; Yu, Y.; Du, Y.; Hao, W. Band-Gap Engineering of BiOCl with Oxygen Vacancies for Efficient Photooxidation Properties under Visible-Light Irradiation. J. Mater. Chem. A 2018, 6, 2193–2199. [Google Scholar] [CrossRef]
- Ji, M.; Chen, R.; Di, J.; Liu, Y.; Li, K.; Chen, Z.; Xia, J.; Li, H. Oxygen Vacancies Modulated Bi-Rich Bismuth Oxyiodide Microspheres with Tunable Valence Band Position to Boost the Photocatalytic Activity. J. Colloid Interface Sci. 2019, 533, 612–620. [Google Scholar] [CrossRef]
- Xiong, X.; Zhou, T.; Liu, X.; Ding, S.; Hu, J. Surfactant-Mediated Synthesis of Single-Crystalline Bi3O4Br Nanorings with Enhanced Photocatalytic Activity. J. Mater. Chem. A 2017, 5, 15706–15713. [Google Scholar] [CrossRef]
- Ning, S.; Shi, X.; Zhang, H.; Lin, H.; Zhang, Z.; Long, J.; Li, Y.; Wang, X. Reconstructing Dual-Induced {0 0 1} Facets Bismuth Oxychloride Nanosheets Heterostructures: An Effective Strategy to Promote Photocatalytic Oxygen Evolution. Sol. RRL 2019, 3, 1900059. [Google Scholar] [CrossRef]
- Dong, G.; Jacobs, D.L.; Zang, L.; Wang, C. Carbon Vacancy Regulated Photoreduction of NO to N2 over Ultrathin G-C3N4 Nanosheets. Appl. Catal. B Environ. 2017, 218, 515–524. [Google Scholar] [CrossRef]
- Ye, C.; Li, J.X.; Li, Z.J.; Li, X.B.; Fan, X.B.; Zhang, L.P.; Chen, B.; Tung, C.H.; Wu, L.Z. Enhanced Driving Force and Charge Separation Efficiency of Protonated G-C3N4 for Photocatalytic O2 Evolution. ACS Catal. 2015, 5, 6973–6979. [Google Scholar] [CrossRef]
- Zhang, J.; Grzelczak, M.; Hou, Y.; Maeda, K.; Domen, K.; Fu, X.; Antonietti, M.; Wang, X. Photocatalytic Oxidation of Water by Polymeric Carbon Nitride Nanohybrids Made of Sustainable Elements. Chem. Sci. 2012, 3, 443–446. [Google Scholar] [CrossRef]
- Li, H.; Shang, J.; Ai, Z.; Zhang, L. Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets. J. Am. Chem. Soc. 2015, 137, 6393–6399. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shang, J.; Shi, J.; Zhao, K.; Zhang, L. Facet-Dependent Solar Ammonia Synthesis of BiOCl Nanosheets via a Proton-Assisted Electron Transfer Pathway. Nanoscale 2016, 8, 1986–1993. [Google Scholar] [CrossRef]
- Bai, Y.; Ye, L.; Chen, T.; Wang, L.; Shi, X.; Zhang, X.; Chen, D. Facet-Dependent Photocatalytic N2 Fixation of Bismuth-Rich Bi5O7I Nanosheets. Acs Appl. Mater. Interfaces 2016, 8, 27661–27668. [Google Scholar] [CrossRef]
- Zhang, N.; Li, L.; Shao, Q.; Zhu, T.; Huang, X.; Xiao, X. Fe-Doped BiOCl Nanosheets with Light-Switchable Oxygen Vacancies for Photocatalytic Nitrogen Fixation. Acs Appl. Energy Mater. 2019, 2, 8394–8398. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Yu, J.C. Fe Enhanced Visible-Light-Driven Nitrogen Fixation on Biobr Nanosheets. Chem. Mater. 2020, 32, 1488–1494. [Google Scholar] [CrossRef]
- Cao, S.; Fan, B.; Feng, Y.; Chen, H.; Jiang, F.; Wang, X. Sulfur-Doped g-C3N4 Nanosheets with Carbon Vacancies: General Synthesis and Improved Activity for Simulated Solar-Light Photocatalytic Nitrogen Fixation. Chem. Eng. J. 2018, 353, 147–156. [Google Scholar] [CrossRef]
- Xue, Y.; Guo, Y.; Liang, Z.; Cui, H.; Tian, J. Porous G-C3N4 with Nitrogen Defects and Cyano Groups for Excellent Photocatalytic Nitrogen Fixation without Co-Catalysts. J. Colloid Interface Sci. 2019, 556, 206–213. [Google Scholar] [CrossRef]
- Xiao, X.; Jiang, J.; Zhang, L. Selective Oxidation of Benzyl Alcohol into Benzaldehyde over Semiconductors under Visible Light: The Case of Bi12O17Cl2 Nanobelts. Appl. Catal. B Environ. 2013, 142–143, 487–493. [Google Scholar] [CrossRef]
- Han, A.; Zhang, H.; Chuah, G.K.; Jaenicke, S. Influence of the Halide and Exposed Facets on the Visible-Light Photoactivity of Bismuth Oxyhalides for Selective Aerobic Oxidation of Primary Amines. Appl. Catal. B Environ. 2017, 219, 269–275. [Google Scholar] [CrossRef]
- Wang, H.; Yong, D.; Chen, S.; Jiang, S.; Zhang, X.; Shao, W.; Zhang, Q.; Yan, W.; Pan, B.; Xie, Y. Oxygen-Vacancy-Mediated Exciton Dissociation in Biobr for Boosting Charge-Carrier-Involved Molecular Oxygen Activation. J. Am. Chem. Soc. 2018, 140, 1760–1766. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yuan, B.; Li, M.; Zhang, W.H.; Liu, Y.; Li, C. Well-Defined BiOCl Colloidal Ultrathin Nanosheets: Synthesis, Characterization, and Application in Photocatalytic Aerobic Oxidation of Secondary Amines. Chem. Sci. 2015, 6, 1873–1878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.; Ren, P.; Li, Y.; Lv, D.; Shen, Y.; Li, Y.; Niemantsverdriet, H.; Besenbacher, F.; Xiang, H.; Hao, W.; et al. Solid Base Bi24O31Br10(OH)δ with Active Lattice Oxygen for the Efficient Photo-Oxidation of Primary Alcohols to Aldehydes. Angew. Chem. Int. Ed. 2019, 58, 6265–6270. [Google Scholar] [CrossRef]
- Juntrapirom, S.; Anuchai, S.; Thongsook, O.; Pornsuwan, S.; Meepowpan, P.; Thavornyutikarn, P.; Phanichphant, S.; Tantraviwat, D.; Inceesungvorn, B. Photocatalytic Activity Enhancement of G-C3N4/BiOBr in Selective Transformation of Primary Amines to Imines and Its Reaction Mechanism. Chem. Eng. J. 2020, 394, 124934. [Google Scholar] [CrossRef]
- Liu, D.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Surface Engineering of G-C3N4 by Stacked BiOBr Sheets Rich in Oxygen Vacancies for Boosting Photocatalytic Performance. Angew. Chem. Int. Ed. 2020, 59, 4519–4524. [Google Scholar] [CrossRef]
- Ye, L.; Zan, L.; Tian, L.; Peng, T.; Zhang, J. The {001} Facets-Dependent High Photoactivity of BiOCl Nanosheets. Chem. Commun. 2011, 47, 6951–6953. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, K.; Xiao, X.; Zhang, L. Synthesis and Facet-Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets. J. Am. Chem. Soc. 2012, 134, 4473–4476. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, T.; Tan, X.; Xie, C.; Wang, S. SDS-Assisted Solvothermal Synthesis of Rose-like BiOBr Partially Enclosed by {111} Facets and Enhanced Visible-Light Photocatalytic Activity. Dalton Trans. 2015, 44, 20475–20483. [Google Scholar] [CrossRef]
- Peng, Y.; Xu, J.; Liu, T.; Mao, Y.G. Controlled Synthesis of One-Dimensional BiOBr with Exposed (110) Facets and Enhanced Photocatalytic Activity. CrystEngComm 2017, 19, 6473–6480. [Google Scholar] [CrossRef]
- Ye, L.; Deng, K.; Xu, F.; Tian, L.; Peng, T.; Zan, L. Increasing Visible-Light Absorption for Photocatalysis with Black BiOCl. Phys. Chem. Chem. Phys. 2012, 14, 82–85. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhao, Y.; Li, F.T.; Dou, L.J.; Li, Y.P.; Zhao, J.; Hao, Y.J. A Chelation Strategy for In-Situ Constructing Surface Oxygen Vacancy on {001} Facets Exposed BiOBr Nanosheets. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, X.; Shi, W.; Ling, P.; Sun, Y.; Jiao, X.; Gao, S.; Liang, L.; Xu, J.; Yan, W.; et al. Efficient Visible-Light-Driven CO2 Reduction Mediated by Defect-Engineered BiOBr Atomic Layers. Angew. Chem. Int. Ed. 2018, 57, 8719–8723. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhai, C.; Gao, H.; Zeng, L.; Du, Y.; Zhu, M. Enhanced Photo-Assisted Ethanol Electro-Oxidation Activity by Using Broadband Visible Light Absorption of a Graphitic C3 N4 /BiOI Carrier. Sustain. Energy Fuels 2019, 3, 439–449. [Google Scholar] [CrossRef]
- Wang, K.; Li, J.; Zhang, G. Ag-Bridged Z-Scheme 2D/2D Bi5FeTi3O15/g-C3N4 Heterojunction for Enhanced Photocatalysis: Mediator-Induced Interfacial Charge Transfer and Mechanism Insights. Acs Appl. Mater. Interfaces 2019, 11, 27686–27696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Z.; Fan, M.; Tong, P.; Sun, J.; Dong, S.; Sun, J. Ultra-Light and Compressible 3D BiOCl/RGO Aerogel with Enriched Synergistic Effect of Adsorption and Photocatalytic Degradation of Oxytetracycline. J. Mater. Res. Technol. 2019, 8, 4577–4587. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Ji, M.; Wang, B.; Yin, S.; Zhang, Q.; Chen, Z.; Li, H. Carbon Quantum Dots Modified BiOCl Ultrathin Nanosheets with Enhanced Molecular Oxygen Activation Ability for Broad Spectrum Photocatalytic Properties and Mechanism Insight. Acs Appl. Mater. Interfaces 2015, 7, 20111–20123. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, W.; Yu, X.; Fu, X.; Zhu, Y.; Zhang, Y. Fabrication of a Ternary BiOCl/CQDs/RGO Photocatalyst: The Roles of CQDs and RGO in Adsorption-Photocatalytic Removal of Ciprofloxacin. Colloids Surf. A Physicochem. Eng. Asp. 2020, 597, 124758. [Google Scholar] [CrossRef]
- Yu, X.; Shi, J.; Feng, L.; Li, C.; Wang, L. A Three-Dimensional BiOBr/RGO Heterostructural Aerogel with Enhanced and Selective Photocatalytic Properties under Visible Light. Appl. Surf. Sci. 2017, 396, 1775–1782. [Google Scholar] [CrossRef]
- Allagui, L.; Chouchene, B.; Gries, T.; Medjahdi, G.; Girot, E.; Framboisier, X.; Amara, A.B.H.; Balan, L.; Schneider, R. Core/Shell RGO/BiOBr Particles with Visible Photocatalytic Activity towards Water Pollutants. Appl. Surf. Sci. 2019, 490, 580–591. [Google Scholar] [CrossRef]
- Xue, J.; Li, X.; Ma, S.; Xu, P.; Wang, M.; Ye, Z. Facile Fabrication of BiOCl/RGO/Protonated g-C3N4 Ternary Nanocomposite as Z-Scheme Photocatalyst for Tetracycline Degradation and Benzyl Alcohol Oxidation. J. Mater. Sci. 2019, 54, 1275–1290. [Google Scholar] [CrossRef]
- Huang, H.; Liu, C.; Ou, H.; Ma, T.; Zhang, Y. Self-Sacrifice Transformation for Fabrication of Type-I and Type-II Heterojunctions in Hierarchical Bi x O y I z /g-C3 N4 for Efficient Visible-Light Photocatalysis. Appl. Surf. Sci. 2019, 470, 1101–1110. [Google Scholar] [CrossRef]
- Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J. A Review of Direct Z-Scheme Photocatalysts. Small Methods 2017, 1, 1700080. [Google Scholar] [CrossRef]
- Zhou, P.; Yu, J.; Jaroniec, M. All-Solid-State Z-Scheme Photocatalytic Systems. Adv. Mater. 2014, 26, 4920–4935. [Google Scholar] [CrossRef]
- Liang, Q.; Cui, S.; Jin, J.; Liu, C.; Xu, S.; Yao, C.; Li, Z. Fabrication of BiOI@UIO-66(NH2)@g-C3 N4 Ternary Z-Scheme Heterojunction with Enhanced Visible-Light Photocatalytic Activity. Appl. Surf. Sci. 2018, 456, 899–907. [Google Scholar] [CrossRef]
- Liang, S.; He, M.; Guo, J.; Yue, J.; Pu, X.; Ge, B.; Li, W. Fabrication and Characterization of BiOBr:Yb3+,Er3+/g-C3N4 p-n Junction Photocatalysts with Enhanced Visible-NIR-Light-Driven Photoactivities. Sep. Purif. Technol. 2018, 206, 69–79. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, P.Q.; Liu, J.Y.; Liu, X.J. Enhanced Photocatalytic Performance of Direct Z-Scheme BiOCl-g-C3N4 Photocatalysts. Rsc Adv. 2014, 4, 19456–19461. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, W.; Shi, H. 2D/2D Z-Scheme BiO1-XBr/g-C3N4 Heterojunction with Rich Oxygen Vacancies as Electron Mediator for Enhanced Visible-Light Degradation Activity. Appl. Surf. Sci. 2020, 528, 146925. [Google Scholar] [CrossRef]
- Tang, Z.K.; Yin, W.J.; Zhang, L.; Wen, B.; Zhang, D.Y.; Liu, L.M.; Lau, W.M. Spatial Separation of Photo-Generated Electron-Hole Pairs in BiOBr/BiOI Bilayer to Facilitate Water Splitting. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.; Xu, Y.; Wang, J.; Zhang, B.; Zhou, T.; Yin, S.; Wu, S.; Li, C.; Huang, Y.; Zhou, Y.; et al. Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H2 Evolution and CO2 Reduction. ACS Sustain. Chem. Eng. 2017, 5, 7260–7268. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Liu, J.; Zhao, C.; Jia, X.; Ma, M.; Qian, Y.; Yang, C.; Liu, K.; Tan, F.; Wang, Z.; et al. Facile Synthesis of Defect-Modified Thin-Layered and Porous g-C3N4with Synergetic Improvement for Photocatalytic H2Production. ACS Appl. Mater. Interfaces 2020. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Sun, Z.; Tang, C.; Zhou, Y.; Zeng, L.; Huang, L. Enhancement of Photocatalytic Hydrogen Evolution Activity of Porous Oxygen Doped G-C3N4 with Nitrogen Defects Induced by Changing Electron Transition. Appl. Catal. B Environ. 2019, 240, 30–38. [Google Scholar] [CrossRef]
- Ruan, D.; Kim, S.; Fujitsuka, M.; Majima, T. Defects Rich G-C3N4 with Mesoporous Structure for Efficient Photocatalytic H2 Production under Visible Light Irradiation. Appl. Catal. B Environ. 2018, 238, 638–646. [Google Scholar] [CrossRef]
- Zhao, D.; Dong, C.; Wang, B.; Chen, C.; Huang, Y.; Diao, Z.; Li, S.; Guo, L.; Shen, S. Synergy of Dopants and Defects in Graphitic Carbon Nitride with Exceptionally Modulated Band Structures for Efficient Photocatalytic Oxygen Evolution. Adv. Mater. 2019, 31, 1903545. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, Y.; Shiota, S.; Kofuji, Y.; Hashimoto, M.; Chishiro, K.; Hirakawa, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Nitrogen Fixation with Water on Carbon-Nitride-Based Metal-Free Photocatalysts with 0.1% Solar-to-Ammonia Energy Conversion Efficiency. ACS Appl. Energy Mater. 2018, 1, 4169–4177. [Google Scholar] [CrossRef]
- Hao, D.; Liu, C.; Xu, X.; Kianinia, M.; Aharonovich, I.; Bai, X.; Liu, X.; Chen, Z.; Wei, W.; Jia, G.; et al. Surface Defect-Abundant One-Dimensional Graphitic Carbon Nitride Nanorods Boost Photocatalytic Nitrogen Fixation. New J. Chem. 2020, 44, 20651. [Google Scholar] [CrossRef]
Synthesis Method | Precursors | Morphology | Contaminant Parameters | Light Source | Heterojunction Type | Significance of the Result | Ref. |
---|---|---|---|---|---|---|---|
BiOX-g-C3N4 | |||||||
BiOI-g-C3N4 | |||||||
Solid-phase calcination | Bi(NO3)3·5H2O, KI and C3H6N6 | Layers of g-C3N4 grown on the surface of BiOI microspheres | Microcystin-LR (5 ppm) | 350 W Xe lamp (λ > 420 nm) | Direct solid-state Z-scheme | Optimized content of g-C3N4 over BiOI for high activity was found to be 4 wt% | [111] |
Electrostatic self-assembly | Bi(NO3)3·5H2O, KI, C3H6N6, H2SO4, HNO3, and C2H6O2 | g-C3N4 nanoparticles on flower-like BiOI nanosheets | Methyl orange (10 ppm) | 300 W Xe lamp (λ > 420 nm) | p-n | Surficial dispersive heterojunctions were beneficial for degradation of MO | [75] |
Simple precipitation | Bi(NO3)3·5H2O, KI, C3H6N6, C2H6O2 and CTAB | Thin nanosheets of BiOI lie on the surface of g-C3N4 | 2,4-dichlorophenol (10 ppm) Bisphenol A (10 ppm) Rhodamine B (100 ppm) Tetracycline hydrochloride (10 ppm) | 300 W Xe lamp (λ > 420 nm) | p-n | Top-top facets of BiOI (001)/g-C3N4 (002) promoted generation of 1O2 and •O2− accounting for excellent photocatalytic activity | [112] |
In situ precursor transformation | CO(NH2)2, Bi(NO3)3·5H2O, KI and C2H6O2 | Numerous quantum-sized nanoparticles are uniformly dispersed across the g-C3N4 nanosheets | Phenol (100 ppm) | 60 W LED lamp (λ > 420 nm) | Direct Z-scheme | Increase in the electron density on BiOI led to internal electric field formation favouring Z-scheme configuration | [113] |
Solvothermal | Bi(NO3)3·5H2O, KI, C3H6N6 and C2H6O2 | BiOI nanoplates are irregularly dispersed over the surface of g-C3N4 nanosheets | Rhodamine B (20 ppm) | 300 W Xe lamp (λ > 420 nm) | p-n | Charge transfer mode in the BiOI/g-C3N4 followed the double-transfer mechanism | [114] |
Solvothermal | Bi(NO3)3·5H2O, KI, HNO3, C3H6N6 and CH4N2S | Thin nanosheets of BiOI composited with wrinkled nanosheets of g-C3N4 | Methylene blue (20 ppm) | 50 W, 410 nm LED light arrays | Direct Z-scheme | Strong IEF at interface occurred due to difference in their Fermi energies was proved by DFT calculations | [115] |
Ultrasonication-assisted | C3H6N6, Bi(NO3)3·5H2O, KI, C2H5OH | BiOI particles are grown over the surface of g-C3N4 sheets | Cr (VI) (10 ppm) | 500 W Xe lamp | Z-scheme | The non-radiative recombination process of photoinduced carriers at the interface was confirmed by photoluminescence and ESR | [116] |
BiOCl-g-C3N4 | |||||||
Simple calcination | Bi(NO3)3·5H2O,CH4N2O, C6H14O6 and NaCl | g-C3N4 nanosheets acted as substrate for compactly anchoring BiOCl nanoplates | Methyl orange (10 ppm) | 300 W Xe lamp | Binary heterojunction | Large contact surface of 2D hybrid structure was efficient in solving detrimental photoinduced carrier recombination | [117] |
Solvothermal | Bi(NO3)3·5H2O, NaCl, PVP, K-30, CH4N2O and C3H8O3 | Ultrathin nanosheets of BiOCl are covered by 2D g-C3N4 layers stacked in the form of multi-slice structure | 4-chlorophenol (10 ppm) | 300 W short-arc Xe lamp | Binary heterojunction | Introduction of oxygen vacancies brings a new defect level for increased photoabsorption | [118] |
Hydrothermal | C3H6N6, NH4Cl, Bi(NO3)3·5H2O and KCl | Smooth surface of BiOCl nanodiscs turned rough after loading ultrathin g-C3N4 nanosheets | Rhodamine B (10 ppm) | 300 W Xe lamp | p-n | Photosensitization of RhB played critical role in degradation process over BiOCl under visible light | [119] |
Ionic liquid-assisted | C2H4N4, C2H6O2, Bi(NO3)3·5H2O and [C16mim]Cl | Spherical microstructures with large number of smaller nanosheets of BiOCl and g-C3N4 | Rhodamine B (10 ppm) | 300 W Xe lamp | p-n | [C16mim]Cl having positive polarity improved the dispersity of g-C3N4 | [89] |
In situ surfactant-free | C3H6N6, Bi(NO3)3·5H2O, HCl and C2H5OH | Irregular elliptical BiOCl nanosheets are grown over the surface of g-C3N4 sheets | Rhodamine B (10 ppm) | 300 W Xe lamp | Binary heterojunction | The appropriate proportion of BiOCl in heterojunction and large surface area with higher adsorption capacity provided larger photoactive sites for photodegradation of RhB | [120] |
Microwave-assited | Bi(NO3)3·5H2O, KCl, C2H6O2, C2H4N4 | Microspheres assembled by nanosheets | Carbamazepine (2.5 ppm) | LED lamp (λ > 420 nm) | n-p | Oxygen vacancies can be assessed by reactions using ethylene glycol as a solvent at a high temperature | [121] |
Microwave-assisted | C3H6N6, Bi(NO3)3·5H2O, KCl, HNO3 | BiOCl microplates were grown over the surface of g-C3N4 nanosheets | Nizatidine (5 ppm) | Mic-LED-365 | Binary heterojunction | pH of the solution was adjusted to match the isoelectric point of the complex materials for enhancing the photocatalytic activity | [122] |
BiOBr-g-C3N4 | |||||||
Reflux process in oil bath | CH4N2O, C2H6O2, Bi(NO3)3·5H2O, KBr and C2H5OH | BiOBr nanoplates are deposited on the surface of larger g-C3N4 nanosheets | Rhodamine B (10 ppm) Bisphenol A (5 ppm) | 300 W Xe lamp | Z-scheme | More reactive sites and enhanced mass transfer resulting from larger specific surface area and mesoporosity led to higher activity | [123] |
Hydrothermal | C3H6N6, C2H6O2, Bi(NO3)3·5H2O and CTAB | Nanoflakes of g-C3N4 and BiOBr are observed | Bisphenol A (10 ppm) Methyl orange (10 ppm) Rhodamine B (10 ppm) | 300 W Xe lamp | Binary heterojunction | Surface functional groups of g-C3N4 provided nucleation sites for reaction by inhibiting the formation of BiOBr assembly | [124] |
Electrostatic self-assembly | Bi(NO3)3·5H2O, KBr, C3H6N6, HCl, CH3COOH and C2H3NaO2 | 3D hierarchical flower-like structures of BiOBr are attached to surface of pg-C3N4 consisting of nanostructures and plicate shapes. | Carbamazepine (5 ppm) | 500 W Xe lamp | Binary heterojunction | Presence of low concentration of bicarbonate accelerated the carbamazepine degradation while nitrate and chloride inhibited its efficiency | [62] |
Solvothermal | Bi(NO3)3·5H2O, CTAB, C3H8O3, PVP and C3H6N6 | Flower-like microspheres of BiOBr are grown over g-C3N4 nanosheets | Methyl orange (10 ppm) Rhodamine B (10 ppm) | 500 W Xe lamp | Z-scheme | Optimum content of g-C3N4 was found to be 5 wt% over the BiOBr nanosheets | [125] |
Ultrasound-assisted water-bath deposition | Bi(NO3)3·5H2O, PVP, C2H6O2, NaBr, C2H5OH and CH4N2O | BiOBr nanoflakes are dispersed over the surface of g-C3N4 nanosheets | Rhodamine B (20 ppm) E. coli (1.0 × 106 CFU mL−1) | Visible light | Z-scheme | Z-scheme photocatalytic mechanism was evidenced from Tafel curve analysis | [99] |
Solvothermal | Bi(NO3)3·5H2O, C3H6N6, CTAB and C2H6O2 | g-C3N4 nanosheets are compactly combined with BiOBr nanosheets | Rhodamine B (10 ppm) | 500 W Xe lamp | Binary heterojunction | Holes and superoxide radicals played dominant role in the RhB removal | [126] |
Template-assisted hydrothermal | Bi(NO3)3·5H2O, NaBr, C2H6O2, NaOH, C2H5OH and NH4Cl | BiOBr microspheres are randomly dispersed on the surface of g-C3N4 | Tetracycline (20 ppm) Rhodamine B (15 ppm) | 500 W Xe lamp | Direct Z-scheme | L-lysine with polar functional groups of amino and hydroxyl, served as bio-template for controlling the crystal growth and self-assembly process of BiOBr | [81] |
Hydrothermal | C3H6N6, Bi(NO3)3·5H2O, HCl, NaOH, CH4N2O, CH4N2S and KBr | BiOBr nanolayers are distributed on the surface of porous g-C3N4 nanosheets | Methylene blue (10 ppm) | 50 W 410 nm LED light | Binary heterojunction | Optimized content of Pg-C3N4 in the binary composite for high activity was found to be 20 wt% | [127] |
Polycondensation and precipitation | C3H6N6, Bi(NO3)3·5H2O and CTAB | Mesoporous flower-like BiOBr are grown over porous sheets of g-C3N4 | Reactive blue 198 (50 ppm) Reactive black 5 (50 ppm) Reactive yellow 145 (50 ppm) | 500 W tungsten lamp | Z-scheme | Degradation pathways were proposed to follow pseudo-first-order kinetics with 30% pGCN-BiOBr | [128] |
Reflux process | TEOS, C2H5OH, NH4OH, C2H4N4, NH4HF2, Bi(NO3)3·5H2O, CH4N2O and KBr | BiOBr nanoparticles are uniformly loaded on the surface of IO CN | Levofloxacin (10 ppm) Rhodamine B (20 ppm) | 300 W Xe lamp | Z-scheme | Combination of Z-scheme and inverse opal structure influenced the visible light absorption ability and photocatalytic performance | [129] |
BixOyXz-g-C3N4 | |||||||
Bi7O9I3-g-C3N4 | |||||||
Hydrothermal | Bi(NO3)3·5H2O, C3H6N6, NaI, CN2H4S and CH3COONa | Flower-like nanospheres of Bi7O9I3 are grown over the surface of g-C3N4 nanosheets | Doxycycline hydrochloride | Xe lamp | Z-scheme | In situ growth of Bi7O9I3 on ultrathin g-C3N4 via mild and simple hydrothermal means without any toxic reagents | [109] |
Bi5O7I-g-C3N4 | |||||||
Hydrothermal | NH3, C2H5OH, TEOS, C18TMOS, CH2N2, NH4HF2, Bi(NO3)3·5H2O, C2H6O2 and KI | Bi5O7I nanoparticles are grown over surface of porous g-C3N4 | Phenol (10 ppm) | CEL-HXF300 | p-n | Silica templates were used to obtain lamellar and porous g-C3N4 in GCN-Bi5O7I composite | [130] |
Hydrothermal | Bi(NO3)3·5H2O, KI, C2H6O2 and C3H6N6 | Irregular shaped layers of g-C3N4 are covered on the surface of microspheres consisting of self-assembled thin platelets of Bi5O7I | Methyl orange (10 ppm) Rhodamine B (10 ppm) | 300 W Xe lamp | Z-scheme Heterojunction | g-C3N4-Bi5O7I-10 showed better performance towards dye degradation in acidic conditions | [107] |
Hydrolysis and thermal condensation | C2H4N4 Bi(NO3)3·4H2O, C2H6O2, NaOH, HCl, C6H15N, KH2PO4 and KI | Rod-like patterns of Bi5O7I are embedded on D-g-C3N4 | Metronidazole (15 ppm) | 300 W Xe lamp | Binary heterojunction | Charge carrier separation in the composite was evidenced from photocurrent response measurements | [131] |
Bi4O5I2-g-C3N4 | |||||||
Mixed calcination | C3H6N6 Bi(NO3)3·4H2O, NaOH and KI | Bi4O5I2 nanoflakes are grown on g-C3N4 nanosheets | Rhodamine B (1 × 10−5 M) NO removal | 300 W tungsten halogen lamp | n-n | Super oxide radicals and holes are active species during the degradation | [132] |
Ionic liquid-assisted solvothermal | C6H14O6, C10H19IN2, Bi(NO3)3·4H2O, NaOH and KI | Bi4O5I2 nanosheets are dispersed on g-C3N4 nanosheets | Rhodamine B (10 ppm) Bisphenol A (10 ppm) | 300 W Xe lamp | Binary hetrojunction | [Hmim]I played multiple roles during the synthesis which was propitious for heterojunction formation | [87] |
Hydrothermal and heating | C3H6N6, Bi(NO3)3·4H2O, C2H6O2 and KI | Hierarchical microspheres of Bi4O5I2 are grown on the surface of g-C3N4 | Methyl orange (20 ppm) | 350 W Xe lamp | Type-II | The in situ transformation endowed the composite with good contact between the semiconductors in construction of tight heterojunction | [110] |
Bi3O4Cl-g-C3N4 | |||||||
Mixing and heating | Bi(NO3)3·5H2O, HCl, Bi2O3 and C3H6N6 | Irregular blocks consisting of a lot of nanoflakes of Bi3O4Cl attached onto the surface of g-C3N4 | Rhodamine B (10 ppm) | 350 W Xe lamp | Binary heterojunction | Coupling Bi3O4Cl on g-C3N4 improved the specific surface area and charge carrier separation | [133] |
Solid phase calcination | Bi(NO3)3·5H2O,CH4N2O, NH4Cl and C2H6O2 | Bi3O4Cl nanoflakes are grown on g-C3N4 nanosheets | Rhodamine B (10 ppm) Tetracycline (10 ppm) Hexavalent chromium (10 ppm) | 250 W Xe lamp | Z-scheme | Shorter fluorescent lifetime (0.952 ns) attributed to additional nonradioactive decay channel for electron transfer from Bi3O4Cl to g-C3N4 | [96] |
Bi12O17Cl2-g-C3N4 | |||||||
Chemical precipitation | CH4N2O, BiCl3, C2H5OH and NaOH | Bi12O17Cl2 nanosheets are grown on surface of g-C3N4 | Rhodamine B (5 ppm) Methyl orange (10 ppm) | 300 W Xe lamp | Binary heterojunction | Hydroxyl radicals and holes main active species during the reaction as evidenced from electron spin resonance technique | [60] |
Bi4O5Br2-g-C3N4 | |||||||
Ionic liquid-assisted solvothermal | [C16mim]Br, C3N3(NH2)3, C2H3N, C3N3Cl3, Bi(NO3)3·5H2O, C6H14O6 and NaOH | Rod-like g-C3N4 has closely combined with sheet-like Bi4O5Br2 | Ciprofloxacin (10 ppm) Rhodamine B (10 ppm) | 300 W Xe lamp | Binary heterojunction | Ionic liquid [C16mim]Br served as solvent, dispersing agent and reactant for the distribution of Bi4O5Br2 over g-C3N4 | [134] |
Precipitation | C3H6N6, C2H5OH, BiBr3 and NaOH | Irregular nanosheets of Bi4O5Br2 were stacked with g-C3N4 sheets | Rhodamine B (10 ppm) Tetracycline (10 ppm) | 72 W LED lamp | Binary heterojunction | Improved adsorptive nature in BBO/CN-75 is due to generation of more Lewis base sites as confirmed by Zeta potential studies | [135] |
Solvothermal | C3H6N6, Bi(NO3)3·5H2O, [C16mim]Br, C6H14O6, NaOH and C2H5OH | Ultrathin Bi4O5Br2 nanosheets are dispersed on the graphene-like g-C3N4 nanosheets | Ciprofloxacin (10 ppm) Rhodamine B (10 ppm) | 300 W Xe lamp | Binary heterojunction | Red shift in the bandgap absorption was observed with introduction of graphene-like g-C3N4 | [85] |
Noble metal coupled BiOX-g-C3N4 | |||||||
BiOI/Pt/g-C3N4 | |||||||
Two-step (reduction and stirring) | CH4N2O, NaBH4, H2PtCl6·6H2O, C2H6O2, Bi(NO3)3·5H2O and KI | Pt nanoparticles and BiOI hierarchical structure grew on the g-C3N4 sheets | Phenol (25 ppm) Tetracycline hydrochloride (20 ppm) | Visible light | Solid-state Z-scheme | Unobstructed Z-scheme charge carrier transfer pathways in BiOI/Pt/g-C3N4 composite are discussed in relevance to phenol and tetracycline oxidation | [136] |
g-C3N4/Eu/Bi24O31Cl10 (BOC) | |||||||
Impregnation-calcination | Bi(NO3)3·5H2O,C3H6N6, NH4Cl, C6H8O7, HNO3, NH3·H2O and Eu(NO3)3.6H2O | g-C3N4 nanosheets were coated on the surface of irregular shaped smaller sized crystal particles of Eu-doped BOC | Rhodamine B (10 ppm) | 250 W Xe lamp | Binary heterojunction | CN/Eu-BOC exhibited higher performance than CN/BOC suggesting that Eu (III) could be used as cocatalyst | [137] |
g-C3N4/Au/BiOBr | |||||||
Hydrothermal and in situ reduction | C3H6N6, Bi(NO3)3·5H2O, KBr, C2H5OH, C8H11NO2 and HAuCl4·4H2O | Au nanoparticles are decorated over the surface of lamellar structure of g-C3N4 and BiOBr sheets | Phenol (10 ppm) | 300 W Xe lamp | Plasmonic Z-scheme | Strong surface plasmon resonance caused by Au NPs contributed to extension of visible light absorption in the ternary composite | [138] |
Chemical reduction | Bi(NO3)3·5H2O, KBr, CH4N2S, CTAB, Na3C6H5O7, AuCl3 and C2H5OH | Au nanoparticles were uniformly distributed over the surface of g-C3N4/BiOBr | Rhodamine B (10 ppm) CO2 reduction | 300 W Xe lamp | Surface plasmon resonance and Z-scheme | Correlation between size of Au NPs and wavelength dependent photocatalytic activity associated with Au-GCN-BiOBr composite is described | [139] |
Carbon material coupled BiOX-g-C3N4 | |||||||
g-C3N4/CDs/BiOI | |||||||
Precipitation | CN2H2, C3H6N6, C6H8O7, Bi(NO3)3·4H2O and NaI | CDs and BiOI nanoparticles are grown in intimate contact with gCN nanosheets | Rhodamine B (2.5 × 10−5 M) Methylene blue (2.5 × 10−5 M) Methyl orange (2.5 × 10−5 M) Fuchsine (9.20 × 10−6 M) | 50 W LED lamp | Ternary heterojunction | Co-operative effects of CQDs and g-C3N4 promoted the activity of BiOI towards the degradation of organic dyes | [140] |
GO/g-C3N4/BiOI | |||||||
In situ generation | CH4N2O, Bi(NO3)3·4H2O, C2H6O2, KI and GO | Flower-like BiOI nanosheets are overlapped with lamellar structure of CN and sheet-like GO. | Methyl orange (10 ppm) Tetracycline (20 ppm) E. coli (50 ppm) S. aureus (50 ppm) | LED lamp | Ternary heterojunction | Loading GO over CN/BiOI resulted in double-charge-transfer at the interface | [141] |
g-C3N4/MCNTs/BiOI | |||||||
Solvothermal | CN2H2, KI, Bi(NO3)3·4H2O and C2H6O2 | BiOI nanoparticles are uniformly loaded on surface of g-C3N4- MCNTs. | Methylene blue (10 ppm) | 300 W Xe lamp | Z-scheme | MCNTs facilitated the electron transfer from BiOI to g-C3N4 resulting in Z-scheme charge transfer pathway | [142] |
g-C3N4/BiOI/rGO immobilized on Ni foam | |||||||
Hydrothermal and reduction | CH4N2O, C2H4N4, NaSO4, Bi(NO3)3·5H2O, C2H6O2, C2H6O, NH3, H4N2·H2O, Ni foam, GO and NaI | Laminar structures of g-C3N4, BiOI and sheet-like rGO form the ternary sheet-like hybrids and are immobilized on the surface of Ni foam. | Methyl orange (5 ppm) CO2 | 300 W Xe lamp | Hybrid Z-scheme | rGO functioned as both electron mediator and binder while Ni foam improved the reusability of the composite | [143] |
g-C3N4/CDs/BiOCl | |||||||
Refluxing | C3H6N6, Bi(NO3)3·5H2O, NaCl, CH4N2O and C6H8O7 | Smaller spherical particles of CDs and rod-like particles of BiOCl are grown on the surface of g-C3N4 nanosheets | Rhodamine B (1 × 10−5 M) Methylene blue (1 × 10−5 M) Methyl orange (1 × 10−5 M) Fuchsine (0.77 × 10−5 M) Phenol (5 × 10−5 M) | 50 W LED lamp | Ternary heterojunction | Formation of g-C3N4/CDs/BiOCl composite influenced the optical properties and photocatalytic performance | [93] |
BiOBr/rGO/pg-C3N4 | |||||||
Solvothermal | CH4N2O, HCl, rGO, C2H6O2, Bi(NO3)3·5H2O and CTAB | BiOBr and rGO nanosheets are dispersed simultaneously on the surface of pg-C3N4 | Rhodamine B (10 ppm) Tetracycline (10 ppm) | 300 W Xe lamp | Ternary Z-scheme | Optimized content of BiOBr in ternary composite for high activity was found to be 10 wt% | [144] |
BiOBr/CDs/g-C3N4 | |||||||
Hydrothermal | Bi(NO3)3·5H2O, KBr, HNO3, CH4N2O, NH4Cl, C6H8O7 and C2H4N4 | Ultrathin nanosheets | Ciprofloxacin (10 ppm) Tetracycline (20 ppm) | 300 W Xe lamp | Z-scheme | Up-converted PL character and short charge transport distance of CDs were beneficial towards broadened light absorption and remarkable interfacial charge transfer | [145] |
CNNs/CDs/BiOBr | |||||||
Refluxing | C3H6N6, C6H8O7, CH4N2O, Bi(NO3)3·5H2O and NaBr | CDs and BiOBr nanoparticles are accumulated on the surface of carbon nitride nanosheets (CNNs) | Rhodamine B (1 × 10−5 M) Methylene blue (1 × 10−5 M) Methyl orange (1 × 10−5 M) Cr(VI) (100 ppm) | 50 W LED lamp | Ternary Z-scheme | CNNs/CDs/BiOBr was stable even after five consecutive cycles towards the degradation of pollutants with fresh dye solution each time | [94] |
g-C3N4/BiOBr-rGO | |||||||
Two-step hydrothermal assembly route | Graphite powder, C8H11NO2, H2SO4, HNO3, KMnO4, H2O2, Bi(NO3)3·5H2O, KBr and C3H6N6 | Flake-like BiOBr are covered by thin layer of g-C3N4 film | Rhodamine B (10 ppm) | 300 W Xe lamp | p-n | Immobilization of the powder catalyst on 3D RGO aerogel surface collectively contributed to excellent recycling process of the catalyst | [146] |
Carbon Fibers/g-C3N4/BiOBr | |||||||
Chemical bath deposition | Carbon fibres, CH4N2O, Bi(NO3)3·5H2O, C4H9NO and KBr | Growth of g-C3N4 nanosheets and BiOBr nanoplates on carbon fibers (CFs) | Tetracycline (20 ppm) | 300 W Xe lamp | Ternary heterojunction | Recyclable cloth-shaped CFs/g-C3N4/BiOBr bundles had great mechanical strength | [147] |
BiOBr/CS/g-C3N4 | |||||||
Solvothermal | C3H6N6, C6H12O6, Bi(NO3)3·5H2O, KBr and C2H6O2 | Spherical carbon spheres are wrapped uniformly with g-C3N4 and BiOBr matrix | Rhodamine B (10 ppm) | 300 W W halogen lamp | Ternary heterojunction | Carbon spheres were used as interlinking network between g-C3N4 and BiOBr matrix for effective electron transfer | [148] |
BiOI/porous g-C3N4/graphene hydrogel | |||||||
Hydrothermal | Bi(NO3)3·5H2O, KI, CH4N2O, C2H6O2, | BiOI and porous g-C3N4 were loaded onto 3D cross-linking graphene hydrogel | Methylene blue (40 ppm) Levofloxacin (20 ppm) | 300 W Xe lamp | Ternary heterojunction | 3D graphene hydrogel played multiple roles: enhanced adsorption ability, provided bulk electron transfer channels, rendered easy separation and recycling | [149] |
Semiconductor coupled BiOX-g-C3N4 | |||||||
Polyacrylonitrile/g-C3N4/BiOI nanofibres | |||||||
Impregnation | Bi(NO3)3·5H2O, KI, C3H6N6, N,N-dimethylformamide (C3H7NO) and polyacrylonitrile (C3H3N)n | BiOI nanostructures are uniformly dispersed over PAN/g-C3N4 nanofibres | Rhodamine B (10 ppm) Cr (VI) (20 ppm) | 300 W Xe lamp | - | Ultralong 1D macroscopic flexible self-supporting floating structures prevented agglomeration and loss of catalyst during recycling | [150] |
SiO2@g-C3N4/BiOI nanofibres | |||||||
Impregnation | Polyvinylpyrrolidone (C6H9NO)n, TEOS (SiC8H20O4), ethanol, C3H6N6, Bi(NO3)3·5H2O and KI | BiOI nanosheets are loaded on the surface of ultrathin g-C3N4@SiO2 nanofibres. | Rhodamine B (10 ppm) | 150 W Xe lamp | Direct Z-scheme | Depositing SiO2 NFs at BiOI/g-C3N4 interface improved Z-scheme charge carrier separation and recyclability | [151] |
BiOI/AgI/g-C3N4 | |||||||
In situ crystallization | Bi(NO3)3·5H2O, KI, AgNO3 and C3H6N6 | Irregular nanoparticles of AgI are grown on the surface of g-C3N4 covered with BiOI nanoflakes. | Methyl orange (10 ppm) Cr(VI) (50 ppm) | 300 W Xe lamp | Ternary heterojunction | Visible light response was tailored from 460 to 560 nm by increasing the content of AgI in the composite | [152] |
BiOI/g-C3N4/CeO2 | |||||||
Calcination and hydrothermal | Bi(NO3)3·5H2O, KI, Ce(NO3)3.6H2O and C3H6N6 | BiOI microspheres and CeO2 nanoparticles are randomly adhered to the surface of g-C3N4 | Tetracycline (20 ppm) | 300 W Xe lamp | Ternary heterojunction | Optimum content of CeO2 in the ternary hybrid was found to be 3 wt% towards efficient TC degradation | [153] |
BiOI@MIL-88A(Fe)@g-C3N4 | |||||||
Hydrothermal | Bi(NO3)3·5H2O, KI, C2H6O2, C3H6N6, FeCl3·6H2O and C4H4O4 | BiOI flower-like hierarchical microspheres are loaded on the surface of MIL-88A(Fe)@g-C3N4 with core@shell structure | Acid blue 92 (10 ppm) Rhodamine B (10 ppm) Phenol (10 ppm) | 300 W Xe lamp | Ternary heterojunction | g-C3N4 deposited over BiOI@MIL-88A(Fe) via hydrothermal method facilitated carrier separation in the composite | [154] |
g-C3N4/Fe3O4/BiOI | |||||||
Reflux and precipitation | Bi(NO3)3·4H2O, NaI, C3H6N6, FeCl3·6H2O, FeCl2·4H2O and NH3 | Fe3O4 particles and BiOI are grown on the surface of g-C3N4 sheets | Rhodamine B (1 × 10−5 M) Methylene blue (1.3 × 10−5 M) Methyl orange (1.05 × 10−5 M) | 50 W LED source | Ternary heterojunction | g-C3N4/Fe3O4/BiOI was magnetically separated from the aqueous medium within a short span of time | [92] |
g-C3N4/I3−-BiOI | |||||||
Solvothermal | C3H6N6, Bi(NO3)3·4H2O, C4H6O6, C4H10O, EDTA-2Na, C6H8O6, K2Cr2O7, NaN3, DMPO and DMSO | Flower-like microspheres containing ultrathin nanosheets of BiOI are loaded g-C3N4 | Methyl mercaptan (CH3SH) (70 ppm) | 8 W LED | Z-scheme | CH3SH removal monitored via in situ DRIFTS and the intermediate and conversion pathways were elucidated | [63] |
MoS2/g-C3N4/Bi24O31Cl10 | |||||||
Impregnation-calcination | Bi(NO3)3·5H2O,C3H6N6, NH4Cl, C6H8O7, HNO3, NH3·H2O, (NH4)6Mo7O24.4H2O and DMF | Numerous g-C3N4 nanosheets and flower-like MoS2 are grown and combined with irregular block-like shapes of BOC | Tetracycline (20 ppm) | 300 W Xe lamp | Dual Z-scheme ternary heterojunction | Carrier lifetime was higher in CN/MS/BOC (3.9782 ns) compared to BOC (1.0163 ns) | [155] |
BiOCl/Bi2MoO6/g-C3N4 | |||||||
Refluxing | Bi(NO3)3·5H2O, Na2MoO4·2H2, HCl and NaOH | Combination of irregular rodlike, platelet-shaped and sheet-shaped morphologies | Rhodamine B (0.5 mM) | 350 W Xe lamp | Ternary heterojunction | BiOCl/Bi2MoO6 immobilized on g-C3N4 surface exhibited dual functionality as photocatalysts and optical limiters | [156] |
BiOCl/CdS/g-C3N4 | |||||||
Solvothermal cum co-precipitation | C3H6N6, HCl, C4H6CdO4, DMSO, Bi(NO3)3·5H2O, C3H8O and NaOH | Growth of hierarchical BiOCl nanoflowers with embedded CdS nanoparticles on g-C3N4 nanosheets | Rhodamine B (20 ppm) Phenol | 400 W Ne-illuminator | Ternary heterojunction | Presence of two visible light active components led to highly efficient electron transfer in multicomponent heterojunction | [157] |
BiOCl/g-C3N4/kaolinite | |||||||
Two-step layer-by-layer self-assembly | C2H4N4, CTAC, Bi(NO3)3·5H2O, CH3COOH, HCHO and kaolinite | g-C3N4 and BiOCl ultrathin nanosheets are covered on the surface of kaolinite lamellar with single layer | Rhodamine B (10 ppm) | 500 W Xe lamp | Ternary heterojunction | Holes dominated the degradation pathways for BiOCl/g-C3N4/kaolinite | [158] |
g-C3N4/g-C3N4/BiOBr | |||||||
Thermal decomposition and solvothermal | CH4N2O, CH4N2S, Bi(NO3)3·5H2O, KBr, NaC12H25SO4 and C2H6O2 | g-C3N4 prepared using thiourea-urea complex was uniformly dispersed on the nanosheets of the flower-like BiOBr | Rhodamine B (20 ppm) Fluorescein isothiocyanate (20 ppm) Tetracycline hydrochloride (20 ppm) | High pressure Xe lamp | Ternary direct Z-scheme + isotype heterojunction | Combined effect of Z-scheme + isotype heterojunction charge transfer pathways was observed in g-C3N4/g-C3N4/BiOBr | [159] |
AgBr/g-C3N4/BiOBr | |||||||
Hydrothermal and in situ ion-exchange | CH4N2O, KBr, Bi(NO3)3·5H2O, AgNO3 and C2H6O2 | AgBr nanoparticles are dispersed on the surface of g-C3N4/BiOBr nanosheets | Rhodamine B (10 ppm) Tetracycline (10 ppm) | 300 W Xe lamp | Ternary heterojunction | Influence of AgBr loading on GCN/BOB composite towards the photocatalytic activity is discussed in detail | [160] |
Brookite/g-C3N4/BiOBr | |||||||
Hydrothermal | TiCl4, Bi(NO3)3·5H2O, C3H6N6, CTAB, NH4Cl, KBr and NaOH | Spindle shaped brookite are wrapped by the layer structure of BiOBr which are further wrapped by lamellar g-C3N4 | Rhodamine B (10 ppm) | 70 W metal halide lamp | Ternary heterojunction | Ternary composite had ability to destroy the oxygen heteroanthracene ring and chromogenic group of RhB | [161] |
BiOCl/g-C3N4@UiO-66 | |||||||
Solvothermal | Bi(NO3)3·5H2O, KCl, CH3COOH, C3H6N6, ZrCl4, C8H6O4, C3H7NO | BiOCl nanoplates and g-C3N4 nanosheets were decorated over the surface of UiO-66 | Rhodamine B (10 ppm) | 250 W Xe lamp | Ternary heterojunction | UiO-66 was proved beneficial to the photocatalytic reaction by enlarging the photoadsorption and preventing the electron-hole recombination | [121] |
g-C3N4/BiOI/Bi2O2CO3 | |||||||
Simple reflux and in situ ion exchange | Bi(NO3)3·5H2O, C3H6N6, KI, NaHCO3, Na2SO4, CH3CH2OH, Kr2Cr2O7, H2SO4, H3PO4 | Thin nanosheets of BiOI are distributed over g-C3N4 layers | Rhodamine B (10 ppm) | 250 W Xe lamp | Ternary heterojunction | Based on the matched energy levels, BiOI acted as the charge transmission bridge | [162] |
BiOX and BiOY coupled g-C3N4 | |||||||
Bi7O9I3/Bi5O7I/g-C3N4 | |||||||
Hydrothermal | C3H6N6, Bi(NO3)3·4H2O, C2H6O2 and KI | Irregular rods consisting of thin irregular nanosheets | Crystal violet (10 ppm) | 150 W Xe lamp | Binary heterojunction | Controlled synthesis of series of BiOxIy/g-C3N4 composites is reported | [163] |
g-C3N4/BiOI/BiOBr | |||||||
Chemical precipitation | CH4N2O, C2H6O2, Bi(NO3)3·5H2O, KBr and KI | Curved g-C3N4 nanosheets are attached to the surface of BiOI/BiOBr exhibiting sphere-like structures containing thin nanosheets of BiOI on large plates of BiOBr | Methyl orange (10 ppm) Escherichia coli (ATCC 15597) | 300 W Xe lamp | Ternary heterojunction | Presence of BiOI shifted the bandgap to longer wavelength and also suppressed the carrier recombination | [164] |
g-C3N4@BiOCl/Bi12O17Cl2 | |||||||
In situ self-assembly | CH4N2O, BiCl3, C2H5OH and NaOH | Combination of layered and irregular microstructures having smooth nanosheets of different sizes are grown over g-C3N4 | NO removal (1 × 10−9 ppb) | 100 W commercial tungsten halogen lamp | Ternary heterojuncton | Electron spin resonance proved that both hydroxyl and superoxide radicals are active species towards NO removal | [165] |
BiOI/BiOCl/g-C3N4 | |||||||
Precipitation | Bi(NO3)3·5H2O,CH4N2O, KI, KCl and NH3 | Nanosheets are stacked densely to form irregular microstructures over thin layers of g-C3N4 | Acid orange (10 ppm) | 400 W Halogen lamp | Ternary heterojuncton | The optimal ratio of ternary hybrid was found to be 5:3:2 | [91] |
Quaternary heterojunction | |||||||
BiOCl/g-C3N4/Cu2O/Fe3O4 | |||||||
Co-precipitation | Bi(NO3)3·5H2O, KCl, NaOH, HNO3, CuSO4·5H2O, C2H5OH, FeCl3, FeCl2 CH4N2S and C2H6O2 | Flower shaped BiOCl, spherical Fe3O4 and cubical Cu2O nanoparticles are connected with porous sheets of g-C3N4 | Sulfamethoxazole (100 µM) | 800 W Xe lamp Natural sunlight | Quaternary nano-heterojunction | p-n-p junction functioned well under both artificial visible light and solar light towards sulfamethoxazole degradation | [166] |
g-C3N4/BiOI/BiOBr | |||||||
Solvothermal | C2H4N4, C2H6O2, Bi(NO3)3·5H2O, KI and CTAB | g-C3N4 was attached to the surface of quadrate BiOBr substrates overlapped with rounded thin pieces of the BiOI | Methylene blue (20 ppm) | 500 W Xe lamp | Ternary Z-scheme | Charge carrier dynamics in ternary composite is reviewed based on transient photocurrent response | [167] |
Doped BiOX-g-C3N4 | |||||||
K-doped g-C3N4/BiOBr | |||||||
In situ synthesis | CH4N2O, CTAB, KOH and Bi(NO3)3·5H2O, | 2D nanosheets | Rhodamine B (20 ppm) Tetracycline (10 ppm) | 500 W Xe lamp | Binary heterojunction | K was interfaced with g-C3N4/BiOBr for improved migration and transportation of photogenic carriers | [168] |
g-C3N4@Bi/BiOBr | |||||||
Solvothermal | C3H6N6, Bi(NO3)3·5H2O, C2H6O2, KBr and C2H5OH | 3D fluffy and hierarchical structure where Bi/BiOBr nanoplates are embedded on the surface of the layered g-C3N4 | Rhodamine B (20 ppm) Tetracycline (12 ppm) | Simulated sunlight | Ternary indirect Z-scheme | Ethylene glycol functioned as solvent and a reductant for tuning the morphology and boosting the photocatalytic performance | [84] |
g-C3N4@Polydopamine/BiOBr | |||||||
Solvothermal | C3H6N6, HCl, Da.HCl, NaOH, Bi(NO3)3·5H2O, PVP, C2H6O2 and KBr | Flower-like BiOBr are deposited on the surface of sheet-like g-C3N4@PDA | Sulfamethoxazole (2.5 ppm) | 300 W Xe lamp | Z-scheme | Biomimetic PDA as electron transfer mediator bridging g-C3N4-BiOBr was reported for the first time | [169] |
Photocatalyst | Light Source | Result | Significance | Ref. |
---|---|---|---|---|
g-C3N4/Bi4O5I2 | 300 W Xe lamp (λ > 420 nm) | Photoreduction of CO2 CO—45.6 µmol g−1 h−1 | I3−/I− redox mediator assisted Z-scheme mechanism enhanced the photocatalytic CO2 conversion | [184] |
g-C3N4/BiOI | 300 W Xe lamp (λ > 420 nm) | Photoreduction of CO2, CO—17.9 µmol g−1 h−1 O2—9.8 µmol g−1 h−1 | Reduction in I content in the composite is unfavourable for the reduction of CO2, implying I3− intermediate plays an important role in charge transfer process | [185] |
g-C3N4/BiOBr/Au | 300 W Xe lamp (λ > 420 nm) | Photoreduction of CO2, CO—6.67 µmol g−1 h−1 CH4—0.92 µmol g−1 h−1 | The size of Au nanoparticles acted as the Z-scheme bridge and SPR centre during the photocatalytic process. | [139] |
g-C3N4/BiOCl-defect rich | 300 W Xe lamp (λ > 420 nm) | Photoreduction of CO2, CO—28.4 µmol g−1 h−1 CH4—4.6 µmol g−1 h−1 | Interfacial oxygen vacancies provide a transport channel for the interfacial carriers, leading to a built-in electric field promoting enhanced carrier transfer efficiency. | [186] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sridharan, K.; Shenoy, S.; Kumar, S.G.; Terashima, C.; Fujishima, A.; Pitchaimuthu, S. Advanced Two-Dimensional Heterojunction Photocatalysts of Stoichiometric and Non-Stoichiometric Bismuth Oxyhalides with Graphitic Carbon Nitride for Sustainable Energy and Environmental Applications. Catalysts 2021, 11, 426. https://doi.org/10.3390/catal11040426
Sridharan K, Shenoy S, Kumar SG, Terashima C, Fujishima A, Pitchaimuthu S. Advanced Two-Dimensional Heterojunction Photocatalysts of Stoichiometric and Non-Stoichiometric Bismuth Oxyhalides with Graphitic Carbon Nitride for Sustainable Energy and Environmental Applications. Catalysts. 2021; 11(4):426. https://doi.org/10.3390/catal11040426
Chicago/Turabian StyleSridharan, Kishore, Sulakshana Shenoy, S. Girish Kumar, Chiaki Terashima, Akira Fujishima, and Sudhagar Pitchaimuthu. 2021. "Advanced Two-Dimensional Heterojunction Photocatalysts of Stoichiometric and Non-Stoichiometric Bismuth Oxyhalides with Graphitic Carbon Nitride for Sustainable Energy and Environmental Applications" Catalysts 11, no. 4: 426. https://doi.org/10.3390/catal11040426
APA StyleSridharan, K., Shenoy, S., Kumar, S. G., Terashima, C., Fujishima, A., & Pitchaimuthu, S. (2021). Advanced Two-Dimensional Heterojunction Photocatalysts of Stoichiometric and Non-Stoichiometric Bismuth Oxyhalides with Graphitic Carbon Nitride for Sustainable Energy and Environmental Applications. Catalysts, 11(4), 426. https://doi.org/10.3390/catal11040426