Catalytic Epoxidation of 3-Carene and Limonene with Aqueous Hydrogen Peroxide, and Selective Synthesis of α-Pinene Epoxide from Turpentine
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of α-Pinene Epoxide 4 in Aqueous Acetonitrile
3.2. Preparation of 3-Carene Epoxide 5, 3-Carene-5-One 6 and 3-Carene-2,5-Dione 7 in Aqueous Acetonitrile
3.3. Preparation of Limonene Epoxide 8 in Aqueous Acetonitrile
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Villa, A.L.P.; De Vos, D.E.; De Montes, C.C.; Jacobs, P.A. Selective epoxidation of monoterpenes with methyltrioxorhenium and H2O2. Tetrahedron Lett. 1998, 39, 8521–8524. [Google Scholar] [CrossRef]
- Fdil, N.; Romane, A.; Allaoud, S.; Karim, A.; Castanet, Y.; Mortreux, A. Terpenic olefin epoxidation using metals acetylacetonates as catalysts. J. Mol. Catal. A 1996, 108, 15–21. [Google Scholar] [CrossRef]
- Mori, K.; Kato, M. Synthesis and absolute configuration of (+)-hernandulcin, a new sesquiterpene with intensely sweet taste. Tetrahedron Lett. 1986, 27, 981–982. [Google Scholar] [CrossRef]
- Scheidl, F. Katalytische Umlagerungen von α-Pinen-epoxid in Gegenwart von Aluminium-alkoxiden. Synthesis 1982, 9, 728. [Google Scholar] [CrossRef]
- Watanabe, K.; Yamamoto, N.; Kaetsu, A.; Yamada, Y. Process for Producing 3,4-Caranediol. U.S. Patent 5608088A, 4 March 1997. [Google Scholar]
- Xu, D.; Rivas-Bascón, N.; Padial, N.M.; Knouse, K.W.; Zheng, B.; Vantourout, J.C.; Schmidt, M.A.; Eastgate, M.D.; Baran, P.S. Enantiodivergent Formation of C−P Bonds: Synthesis of P-Chiral Phosphines and Methylphosphonate Oligonucleotides. J. Am. Chem. Soc. 2020, 142, 5785–5792. [Google Scholar] [CrossRef] [PubMed]
- Bakhvalov, O.V.; Fomenko, V.V.; Salakhutdinov, N.F. Modern Methods of Epoxidation of α- and β-Pinenes, 3-Carene and Limonene. Chem. Sustain. Dev. 2008, 16, 633–691. [Google Scholar]
- Takai, T.; Hata, E.; Yorozu, K.; Mukaiyama, T. Cobalt(II) Complex Catalyzed Epoxidation of Olefins by Combined Use of Molecular Oxygen and Cyclic Ketones. Chem. Lett. 1992, 21, 2077. [Google Scholar] [CrossRef]
- Zhang, H.; He, J.; Lu, X.; Yang, L.; Wang, C.; Yue, F.; Zhou, D.; Xia, Q. Fast-synthesis and catalytic property of heterogeneous Co-MOF catalysts for the epoxidation of α-pinene with air. New J. Chem. 2020, 44, 17413–17421. [Google Scholar] [CrossRef]
- Martinez, H.; Amaya, A.A.; Paez-Mozo, E.A.; Martinez, F. Highly efficient epoxidation of α-pinene with O2 photocatalyzed by dioxoMo(VI) complex anchored on TiO2 nanotubes. Microporous Microporous Mater. 2018, 265, 202–210. [Google Scholar] [CrossRef]
- Lu, X.H.; Lei, J.; Wei, H.L.; Ma, X.T.; Zhang, T.J.; Hu, W.; Zhou, D.; Xia, Q.H. Selectively catalytic epoxidation of α-pinene with dry air over the composite catalysts of Co–MOR(L) with Schiff-base ligands. J. Mol. Catal. A Chem. 2015, 400, 71–80. [Google Scholar] [CrossRef]
- Elemans, J.A.A.W.; Bijsterveld, E.J.A.; Rowan, A.E.; Nolte, R.J.M. A host–guest epoxidation. Chem. Commun. 2000, 24, 2443–2444. [Google Scholar] [CrossRef]
- Majetich, G.; Hicks, R.; Sun, G.R.; McGill, P. Carbodiimide-Promoted Olefin Epoxidation with Aqueous Hydrogen Peroxide. J. Org. Chem. 1998, 63, 2564–2573. [Google Scholar] [CrossRef] [PubMed]
- Lane, B.S.; Burgess, K. A cheap, catalytic, scalable, and environmentally benign method for alkene epoxidations. J. Am. Chem. Soc. 2001, 123, 2933–2934. [Google Scholar] [CrossRef]
- Mouret, A.; Leclercq, L.; Muhlbauer, A.; Nardello-Rataj, V. Eco-friendly solvents and amphiphilic catalytic polyoxometalate nanoparticles: A winning combination for olefin epoxidation. Green Chem. 2014, 16, 269–278. [Google Scholar] [CrossRef]
- Pierri, L.; Gemenetzi, A.; Mavrogiorgou, A.; Regitano, J.B.; Deligiannakis, Y.; Louloudi, M. Biochar as supporting material for heterogeneous Mn(II) catalysts: Efficient olefins epoxidation with H2O2. Mol. Catal. 2020, 489, 110946. [Google Scholar] [CrossRef]
- Cunningham, W.B.; Tibbetts, J.D.; Hutchby, M.; Maltby, K.A.; Davidson, M.G.; Hintermair, U.; Plucinski, P.; Bull, S.D. Sustainable catalytic protocols for the solvent free epoxidation and anti-dihydroxylation of the alkene bonds of biorenewable terpene feedstocks using H2O2 as oxidant. Green Chem. 2020, 22, 513–524. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Wu, C.; Wu, Y.; Liu, H.; Xu, G.; Deng, J.; Gu, H.; Liu, H.; Zhang, J.; Umar, A.; et al. Optimization of Epoxypinane Synthesis by Silicotungstic Acid Supported on SBA-15 Catalyst Using Response Surface Methodology. Sci. Adv. Mater. 2019, 11, 699–707. [Google Scholar] [CrossRef] [Green Version]
- Bermudez, J.H.; Rojas, G.; Benitez, R.B.; Franco, J.M. Easy Epoxidation of Monoterpenes from Common Starting Materials. J. Braz. Chem. Soc. 2020, 31, 1086–1092. [Google Scholar] [CrossRef]
- Charbonneau, L.; Foster, X.; Kaliaguine, S. Ultrasonic and Catalyst-Free Epoxidation of Limonene and Other Terpenes Using Dimethyl Dioxirane in Semibatch Conditions. ACS Sustain. Chem. Eng. 2018, 6, 12224–12231. [Google Scholar] [CrossRef]
- Payami, F.; Bezaatpour, A.; Eskandari, H. Excellent alkene epoxidation catalytic activity of macrocyclic-based complex of dioxo-Mo(VI) on supermagnetic separable nanocatalyst. Appl. Organomet. Chem. 2018, 32, e3986. [Google Scholar] [CrossRef]
- Akbarpour, S.; Bezaatpour, A.; Askarizadeh, E.; Amiri, M. Covalent supporting of novel dioxo-molybdenum tetradentate pyrrole-imine complex on Fe3O4 as high-efficiency nanocatalyst for selective epoxidation of olefins. Appl. Organomet. Chem. 2017, 31, e3804. [Google Scholar] [CrossRef]
- Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Bahramian, B. Polystyrene-bound imidazole as a heterogeneous axial ligand for Mn(salophen)Cl and its use as biomimetic alkene epoxidation and alkane hydroxylation catalyst with sodium periodate. Appl. Catal. 2006, 311, 43–50. [Google Scholar] [CrossRef]
- Arbuzov, B.A. Research in the field of isomerization of terpene oxides. III. Isomerization of camphene, nopinene and 3-carene oxides in the Reformatsky reaction. Russ. J. Gen. Chem. 1939, 9, 255. [Google Scholar]
- Saladino, R.; Neri, V.; Pelliccia, A.R.; Mincione, A.R. Selective epoxidation of monoterpenes with H2O2 and polymer-supported methylrheniumtrioxide systems. Tetrahedron 2003, 59, 7403–7408. [Google Scholar] [CrossRef]
- Barlan, A.U.; Basak, A.; Yamamoto, H. Enantioselective Oxidation of Olefins Catalyzed by a Chiral Bishydroxamic Acid Complex of Molybdenum. Angew. Chem. Int. Ed. 2006, 45, 5849–5852. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Kamata, K.; Kotani, M.; Yamaguchi, K.; Mizuno, N. Polyoxovanadometalate-Catalyzed Selective Epoxidation of Alkenes with Hydrogen Peroxid. Angew. Chem. Int. Ed. 2005, 44, 5136–5141. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.T.; Ji, H.B.; Xu, J.C.; Pei, L.X.; Wang, L.F.; Yao, X.D. Enzymatic-like mediated olefins epoxidation by molecular oxygen under mild conditions. Tetrahedron Lett. 2007, 48, 2691–2695. [Google Scholar] [CrossRef]
- Resul MFMGFernandez, A.M.L.; Rehman, A.; Harvey, A.P. Development of a selective, solvent-free epoxidation of limonene using hydrogen peroxide and a tungsten-based catalyst. React. Chem. Eng. 2018, 3, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Charbonneau, L.; Foster, X.; Zhao, D.; Kaliaguine, S. Catalyst-Free Epoxidation of Limonene to Limonene Dioxide. ACS Sustain. Chem. Eng. 2018, 6, 5115–5121. [Google Scholar] [CrossRef] [Green Version]
- Charbonneau, L.; Kaliaguine, S. Epoxidation of limonene over low coordination Ti in Ti-SBA-16. Appl. Catal. A Gen. 2017, 533, 1–8. [Google Scholar] [CrossRef]
- Guidotti, M.; Psaro, R.; Batonneau-Gener, I.; Gavrilova, E. Heterogeneous Catalytic Epoxidation: High Limonene Oxide Yields by Surface Silylation of Ti-MCM-41. Chem. Eng. Technol. 2011, 34, 1924–1927. [Google Scholar] [CrossRef]
- van Viet, M.C.A.; Mandelli, D.; Arends, I.W.C.E.; Schuchardt, U.; Sheldon, R.A. Alumina: A cheap, active and selective catalyst for epoxidations with (aqueous) hydrogen peroxide. Green Chem. 2001, 3, 243–246. [Google Scholar] [CrossRef]
- Fomenko, V.V.; Bakhvalov, O.V.; Kollegov, V.F.; Salakhutdinov, N.F. Catalytic epoxidation of β-pinene with aqueous hydrogen peroxide. Russ. J. Gen. Chem. 2017, 87, 1675–1679. [Google Scholar] [CrossRef]
- Tatarova, L.E.; Korchagina, D.V.; Volcho, K.P.; Salakhutdinov, N.F.; Barkhash, V.A. Reactions of Epoxides Prepared from Some Monoterpenes with Acetic Anhydride on Aluminosilicate Catalysts. Russ. J. Org. Chem. 2003, 39, 1076–1082. [Google Scholar] [CrossRef]
- Galin, F.Z.; Kukovinets, O.S.; Shereshovets, V.V.; Safiullin, R.L.; Kukovinets, A.G.; Kabal’nova, N.N.; Kasradze, V.G.; Zaripov, R.N.; Kargapol’tseva, T.A.; Kashina, Y.A.; et al. Synthesis of 4α-Hydroxy-6,6-Dimethyl-3-Oxabicyclo[3.1.0]hex-2-one from (+)-3-Carene. Russ. J. Org. Chem. 1996, 32, 1429–1432. [Google Scholar]
- Carman, R.M.; Klika, K.D. Determination of the Enantiomeric Composition of Limonene and Limonene-1,2-epoxide in Lemon Peel by Multidimensional Gas Chromatography with Flame-lonization Detection and Selected Ion Monitoring Mass Spectrometry. Aust. J. Chem. 1991, 44, 1803–1808. [Google Scholar] [CrossRef]
- Soto, M.; Koschek, K. Diastereoisomeric diversity dictates reactivity of epoxy groups in limonene dioxide polymerization. Express Polym. Lett. 2018, 12, 583–589. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fomenko, V.V.; Laev, S.S.; Salakhutdinov, N.F. Catalytic Epoxidation of 3-Carene and Limonene with Aqueous Hydrogen Peroxide, and Selective Synthesis of α-Pinene Epoxide from Turpentine. Catalysts 2021, 11, 436. https://doi.org/10.3390/catal11040436
Fomenko VV, Laev SS, Salakhutdinov NF. Catalytic Epoxidation of 3-Carene and Limonene with Aqueous Hydrogen Peroxide, and Selective Synthesis of α-Pinene Epoxide from Turpentine. Catalysts. 2021; 11(4):436. https://doi.org/10.3390/catal11040436
Chicago/Turabian StyleFomenko, Vladislav V., Sergey S. Laev, and Nariman F. Salakhutdinov. 2021. "Catalytic Epoxidation of 3-Carene and Limonene with Aqueous Hydrogen Peroxide, and Selective Synthesis of α-Pinene Epoxide from Turpentine" Catalysts 11, no. 4: 436. https://doi.org/10.3390/catal11040436
APA StyleFomenko, V. V., Laev, S. S., & Salakhutdinov, N. F. (2021). Catalytic Epoxidation of 3-Carene and Limonene with Aqueous Hydrogen Peroxide, and Selective Synthesis of α-Pinene Epoxide from Turpentine. Catalysts, 11(4), 436. https://doi.org/10.3390/catal11040436