Microbial Removal of Pb(II) Using an Upflow Anaerobic Sludge Blanket (UASB) Reactor
Abstract
:1. Introduction
2. Results
2.1. Continuous Experimental Runs
2.1.1. Run 1
2.1.2. Run 2
2.1.3. Run 3a
2.1.4. Run 3b
2.2. Precipitate Analysis
2.3. Comparison with Other Studies
3. Materials and Methods
3.1. Materials
3.2. Preculture
3.3. UASB Reactor Operation
3.4. Sampling and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chatterjee, S.; Mukherjee, A.; Sarkar, A.; Roy, P. Bioremediation of lead by lead-resistant microorganisms, isolated from industrial sample. Adv. Biotechnol. 2014, 3, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Kundu, D.; Mondal, S.; Dutta, D.; Haque, S.; Ghosh, A.R. Accumulation and contamination of lead in different trophic levels of food chain in sewage-fed East Kolkata Wetland, West Bengal, India. Int. J. Environ. Technol. Sci. 2016, 2, 61–68. [Google Scholar]
- Tiquia-Arashiro, S.M. Lead absorption mechanisms in bacteria as strategies for lead bioremediation. Appl. Microbiol. Biotechnol. 2018, 102, 5437–5444. [Google Scholar] [CrossRef]
- Brink, H.G.; Mahlangu, Z. Microbial Lead (II) precipitation: The influence of growth substrate. Chem. Eng. Trans. 2018, 64, 439–444. [Google Scholar]
- Naik, M.M.; Dubey, S.K. Ecotoxicology and Environmental Safety Lead resistant bacteria: Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol. Environ. Saf. 2013, 98, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, M.; Hemati, S.; Amiri, M. Removal of lead ions from industrial wastewater: A review of Removal methods. Int. J. Epidemiol. 2015, 2, 105–109. [Google Scholar]
- Mathee, A.; Khan, T.; Naicker, N.; Kootbodien, T. Lead exposure in young school children in South African subsistence fishing communities. Environ. Res. 2013, 126, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Hörstmann, C.; Brink, H.G. Microbial lead (II) Precipitation: The Influence of Aqueous Zn (II) and Cu (II). Chem. Eng. Trans. 2019, 74, 1447–1452. [Google Scholar]
- Cleveland, L.M.; Minter, M.L.; Cobb, K.A.; Scott, A.A.; German, V.F. Lead Hazards for and Children: Part 1. Am. J. Nurs. 2008, 108, 40–50. [Google Scholar]
- Needleman, H. Lead poisoning. Annu. Rev. Med. 2004, 55, 209–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Patrick, L. Lead Toxicity, A Review of the Literature. Part 1: Exposure, Evaluation, and Treatment. Altern. Med. Rev. 2006, 11, 1–22. [Google Scholar]
- Radziemska, M. Phytostabilization—Management Strategy for Stabilizing Trace Elements in Contaminated Soils. Int. J. Environ. Res. Public Health 2017, 14, 958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zul, U.; Farooq, M.; Hussain, S.; Maqsood, M.; Hussain, M.; Ishfaq, M.; Ahmad, M.; Zohaib, M. Lead toxicity in plants: Impacts and remediation. J. Environ. Manag. 2019, 250, 1–21. [Google Scholar]
- Pourrut, B.; Shahid, M.; Dumat, C.; Winterton, P.; Pinelli, E. Lead Uptake, Toxicity, and Detoxification in Plants. Rev. Environ. Contam. Toxicol. 2012, 213, 113–136. [Google Scholar]
- ILA-International Lead Association. Available online: https://www.ila-lead.org/lead-facts/lead-production--statistics (accessed on 1 June 2020).
- Statista Lead Reserves Worldwide as of 2018. Available online: https://www.statista.com/statistics/273652/global-lead-reserves-by-selected-countries (accessed on 6 December 2020).
- Adeniji, A. Bioremediation of Arsenic, Chromium, Lead, and Mercury; US Enviromental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office: Washington, DC, USA, 2004.
- Brink, H.G.; Hörstmann, C.; Feucht, C.B. Microbial Pb (II) Precipitation: Minimum Inhibitory Concentration and Precipitate Identity. Chem. Eng. Trans. 2019, 74, 1453–1458. [Google Scholar]
- Pan, X.; Zhang, D.; Fu, Q. Bioremediation of Pb-Contaminated Soil Based on Microbially Induced Calcite Precipitation. J. Microbiol. Biotechnol. 2012, 22, 244–247. [Google Scholar]
- Brink, H.G.; Lategan, M.; Naudé, K.; Chirwa, E.M.N. Lead removal using industrially sourced consortia: Influence of lead and glucose concentrations. Chem. Eng. Trans. 2017, 57, 409–414. [Google Scholar]
- Peens, J.; Wu, Y.W.; Brink, H.G. Microbial Pb (II) Precipitation: The Influence of Elevated Pb (II) Concentrations. Chem. Eng. Trans. 2018, 64, 583–588. [Google Scholar]
- Hörstmann, C.; Naidoo, S.; Brink, H.G.; Chirwa, E.M.N. Microbial Pb (II) Precipitation: Yeast Extract Autolyzed from Saccharomyces Cerevisiae as a Sustainable Growth Substrate. Chem. Eng. Trans. 2020, 74, 421–426. [Google Scholar]
- Hörstmann, C.; Brink, H.G.; Chirwa, E.M.N. Pb (II) bio-removal, viability, and population distribution of an industrial microbial consortium: The effect of Pb (II) and nutrient concentrations. Sustainability 2020, 12, 2511. [Google Scholar] [CrossRef] [Green Version]
- Dabkowski, B. Applying Oxidation Reduction Potential Sensors in Biological Nutrient Removal Systems. In Proceedings of the Water Environment Federation, WEFTEC, Washington, DC, USA, 29 October–2 November 2005. [Google Scholar]
- Blanc, F.C.; Molof, A.H.; Molof, H. Electrode electrolytic digestion potential control monitoring in anaerobic digestion. J. Water Pollut. Control Fed. 2015, 45, 655–667. [Google Scholar]
- Lee, S.J. Relationship between Oxidation Reduction Potential (ORP) and Volatile Fatty Acid (VFA) Production in the Acid-Phase Anaerobic Digestion. Master’s Thesis, The University of Canterbury, Christchurch, New Zealand, January 2008. [Google Scholar]
- Mauerhofer, L.; Pappenreiter, P.; Paulik, C.; Seifert, A.H.; Bernacchi, S.; Rittmann, S.K.R. Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology. Folia Microbiol. 2019, 64, 321–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Q.; Kirk, M.F. pH as a Primary Control in Environmental Microbiology: 1. Thermodynamic Perspective. Front. Environ. Sci. 2018, 6, 21. [Google Scholar] [CrossRef]
- Brink, H.G.; Hörstmann, C.; Peens, J. Microbial Pb (II)-precipitation: The influence of oxygen on Pb (II)-removal from aqueous environment and the resulting precipitate identity. Int. J. Environ. Sci. Technol. 2019, 17, 409–420. [Google Scholar] [CrossRef]
- Velasco, A.; Ram, M.; Volke-sep, T.; Gonz, A. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation. J. Hazard. Mater. 2008, 151, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Villa-Gomez, D.; Ababneh, H.; Papirio, S.; Rousseau, D.P.; Lens, P.N.L. Batch and continuous removal of heavy metals from industrial effluents using microbial consortia. Int. J. Environ. Sci. Technol. 2017, 14, 1169–1180. [Google Scholar]
- Lens, P.N.L.; Pol, L.H. Principles and Engineering: Environmental Technologies to Treat. In Sulfur Pollution, 1st ed.; IWA Publishing: London, UK, 2000; pp. 156–169. [Google Scholar]
- Somlev, V.; Banov, M. Three stage process for complex biotechnological treatment of industrial wastewater from uranium mining. Biotechnol. Technol. 1998, 12, 637–639. [Google Scholar] [CrossRef]
- Steed, V.S.; Suidan, M.T.; Gupta, M.; Miyahara, T.; Carolyn, M.; Sayles, G.D. Development Biological Metals from of Process a Sulfate-Reducing to Remove Mine Drainage Heavy Acid. Water Environ. Res. 2016, 72, 530–535. [Google Scholar] [CrossRef]
- Kiran, M.G.; Pakshirajan, K.; Das, G. An overview of sulfidogenic biological reactors for the simultaneous treatment of sulfate and heavy metal rich wastewater. Chem. Eng. Sci. 2016, 158, 606–620. [Google Scholar] [CrossRef]
- Hörstmann, C.; Brink, H.G.; Chirwa, E.M.N. Microbial Pb (II) Precipitation: Kinetic modelling of Pb (II) removal and microbial growth. Comput. Aided Chem. Eng. 2020, 48, 661–666. [Google Scholar]
Mechanism | System | Maximum Pb(II) Concentration Tested (mg/L) | Maximum Pb(II) Removal Efficiency (%) | Maximum Pb(II) Removal Rate (mg/(L·d)) | References |
---|---|---|---|---|---|
Lead-reducing microbial consortium | UASB reactor with a throughflow | 2000 | 99.9 | 1948.4 | Current study |
Sulphate-reducing bacteria | UASB reactor with recirculation | 200 | 99.0 | 49.5 | [31] |
Sulphate-reducing bacteria | Inversed fluidised bed reactor | 10 | 97.3 | 9.73 | [32] |
Sulphate-reducing bacteria | Anaerobic filter with plastic pall rings | 18 | 90 | 32.4 | [33] |
Sulphate-reducing bacteria | Three-stage system with recirculation | 0.2 | 90 | 0.64 | [34] |
Sulphate-reducing bacteria | Anaerobic filter reactor | 1.5 | 99.9 | 0.18 | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chimhundi, J.; Hörstmann, C.; Chirwa, E.M.N.; Brink, H.G. Microbial Removal of Pb(II) Using an Upflow Anaerobic Sludge Blanket (UASB) Reactor. Catalysts 2021, 11, 512. https://doi.org/10.3390/catal11040512
Chimhundi J, Hörstmann C, Chirwa EMN, Brink HG. Microbial Removal of Pb(II) Using an Upflow Anaerobic Sludge Blanket (UASB) Reactor. Catalysts. 2021; 11(4):512. https://doi.org/10.3390/catal11040512
Chicago/Turabian StyleChimhundi, Jeremiah, Carla Hörstmann, Evans M. N. Chirwa, and Hendrik G. Brink. 2021. "Microbial Removal of Pb(II) Using an Upflow Anaerobic Sludge Blanket (UASB) Reactor" Catalysts 11, no. 4: 512. https://doi.org/10.3390/catal11040512
APA StyleChimhundi, J., Hörstmann, C., Chirwa, E. M. N., & Brink, H. G. (2021). Microbial Removal of Pb(II) Using an Upflow Anaerobic Sludge Blanket (UASB) Reactor. Catalysts, 11(4), 512. https://doi.org/10.3390/catal11040512