Facile Synthesis of Flower-Like TiO2-Based Composite for Adsorption–Photocatalytic Degradation of High-Chroma Methylene Blue
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.1.1. Morphologies
2.1.2. Spectral Properties
2.2. Adsorption and Photocatalytic Activity Evaluation
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Fan, W.; Long, B.; Li, H.; Zhao, F.; Liu, Z.; Tong, Y.; Ji, H. Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions. Appl. Catal. B Env. 2016, 185, 68–76. [Google Scholar] [CrossRef]
- Xing, B.; Dong, J.; Yang, G.; Jiang, N.; Liu, X.; Yuan, J. An insight into N, S-co doped activated carbon for the catalytic persulfate oxidation of organic pollutions in water: Effect of surface functionalization. Appl. Catal. A Gen. 2020, 602, 117714. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Yan, Y.J.; Bian, F.; Zhang, G. Adsorption of methylene blue in media industry pollution by GO-coated glass wool/EVA/EPDM foaming composite. Appl. Mech. Mater. 2014, 448, 115–118. [Google Scholar] [CrossRef]
- Alvarenga, G.; Lima, J.P.; Goszczynski, A.C.; Rosa, C.H.; Rosa, G.R.; Lopes, T.J. Methylene blue adsorption by timbaúva (Enterolobium contortisiliquum)-derived materials. Environ. Sci. Pollut. Res. 2020, 27, 27893–27903. [Google Scholar] [CrossRef]
- Zhao, K.; Zhao, G.; Li, P.; Gao, J.; Lv, B.; Li, D. A novel method for photodegradation of high-chroma dye wastewater via electrochemical pre-oxidation. Chemosphere 2010, 80, 410–415. [Google Scholar] [CrossRef]
- Agustina, T.E.; Ang, H.M.; Vareek, V.K. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J. Photochem. Photobiol. CPhotochem. Rev. 2005, 6, 264–273. [Google Scholar] [CrossRef]
- Fazal, T.; Razzaq, A.; Javed, F.; Hafeez, A.; Rashid, N.; Amjad, U.S.; Rehman, M.S.; Faisal, A.; Rehman, F. Integrating adsorption and photocatalysis: A cost effective strategy for textile wastewater treatment using hybrid biochar-TiO2 composite. J. Hazard. Mater. 2020, 390, 121623. [Google Scholar] [CrossRef]
- Gong, H.; Jin, Z.; Xu, H.; Wang, Q.; Zuo, J.; Wu, J.; Wang, K. Redesigning C and N mass flows for energy-neutral wastewater treatment by coagulation adsorption enhanced membrane (CAEM)-based pre-concentration process. Chem. Eng. J. 2018, 342, 304–309. [Google Scholar] [CrossRef]
- Zhao, L.; Deng, J.; Sun, P.; Liu, J.; Ji, Y.; Nakada, N.; Qiao, Z.; Tanaka, H.; Yang, Y. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis. Sci. Total Environ. 2018, 627, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Chattopadhyay, S.; Kundu, A.; Sharma, R.K.; Maiti, P.; Das, S. Vertically aligned zinc oxide nanosheet for high-performance photocatalysis of water pollutants. Ceram. Int. 2019, 45, 16821–16828. [Google Scholar] [CrossRef]
- Lv, K.; Xu, Y. Effects of polyoxometalate and fluoride on adsorption and photocatalytic degradation of organic dye X3B on TiO2: The difference in the production of reactive species. J. Phys. Chem. B 2006, 110, 6204–6212. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wu, H.; Gu, F.L. Efficient adsorption and photocatalytic degradation of Rhodamine B under visible light irradiation over BiOBr/montmorillonite composites. J. Hazard. Mater. 2014, 275, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.G.; Javed, H.; Zhang, D.; Kim, J.H.; Westerhoff, P.; Li, Q.; Alvarez, P.J. Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environ. Sci. Technol. 2018, 52, 4285–4293. [Google Scholar] [CrossRef] [PubMed]
- Puma, G.L.; Bono, A.; Krishnaiah, D.; Collin, J.G. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. J. Hazard. Mater. 2008, 157, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Khavina, E.Y. Nanoclays: Prospects from heterogeneous catalysts to a solid polymer film component. Nanotechnol. Res. J. 2016, 9, 123–144. [Google Scholar]
- Yang, C.; Zhao, L.; Lu, X.; Pan, L.; Zhang, L.; Yan, W.; Zhao, Y.; Liu, Z. Preparation and photocatalysis of g-C3N4/zeolites based on photocatalytic activity and adsorption support ability. Sci. Adv. Mater. 2019, 11, 366–371. [Google Scholar] [CrossRef]
- Augugliaro, V.; Yurdakal, S.; Loddo, V.; Palmisano, G.; Palmisano, L. Determination of photoadsorption capacity of polychrystalline TiO2 catalyst in irradiated slurry. Adv. Chem. Eng. 2009, 36, 1–35. [Google Scholar]
- Li, Y.; Cao, S.; Zhang, A.; Zhang, C.; Qu, T.; Zhao, Y.; Chen, A. Carbon and nitrogen co-doped bowl-like Au/TiO2 nanostructures with tunable size for enhanced visible-light-driven photocatalysis. Appl. Surf. Sci. 2018, 445, 350–358. [Google Scholar] [CrossRef]
- Saha, S.; Wang, J.M.; Pal, A. Nano silver impregnation on commercial TiO2 and a comparative photocatalytic account to degrade malachite green. Sep. Purif. Technol. 2012, 89, 147–159. [Google Scholar] [CrossRef]
- Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of titanium oxide nanotube. Langmuir 1998, 14, 3160–3163. [Google Scholar] [CrossRef]
- Tsai, C.C.; Teng, H. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem. Mater. 2006, 18, 367–373. [Google Scholar] [CrossRef]
- López-Muñoz, M.J.; Revilla, A.; Alcalde, G. Brookite TiO2-based materials: Synthesis and photocatalytic performance in oxidation of methyl orange and As (III) in aqueous suspensions. Catal. Today 2015, 240, 138–145. [Google Scholar] [CrossRef]
- Naseri, K.; Allahverdi, A. Methylene blue adsorption by TiO2-based nano-adsorbents: Performance evaluation and kinetic study. Res. Chem. Intermed. 2019, 45, 4863–4883. [Google Scholar] [CrossRef]
- Cao, W.; Wang, W.; Shi, H.; Wang, J.; Cao, M.; Liang, Y.; Zhu, M. Hierarchical three-dimensional flower-like Co3O4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries. Nano Res. 2018, 11, 1437–1446. [Google Scholar] [CrossRef]
- Xie, S.; Zheng, B.; Kuang, Q.; Wang, X.; Xie, Z.; Zheng, L. Synthesis of layered protonated titanate hierarchical microspheres with extremely large surface area for selective adsorption of organic dyes. CrystEngComm 2012, 14, 7715–7720. [Google Scholar] [CrossRef]
- Qi, Y.; Luan, Y.; Yang, M.; Wang, G.; Tan, L.; Li, J. Alkali concentration-dependent tailoring of highly controllable titanate nanostructures: From yolk-shell, hollow 3D nanospheres to 1D nanowires. Appl. Surf. Sci. 2014, 293, 359–365. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G.; Liu, J.; Wang, T.; Wang, X.; Liu, B.; Liu, Y.; Huo, Q.; Chu, Z. Synthesis of hierarchical hollow sodium titanate microspheres and their application for selective removal of organic dyes. J. Colloid Interface Sci. 2018, 528, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Piao, L.; Lu, W.; Ju, S.; Zhao, L.; Zhou, C.; Li, H.; Wang, W. Flower-like TiO2 nanostructures with exposed {001} facets: Facile synthesis and enhanced photocatalysis. Nanoscale 2010, 2, 1115–1117. [Google Scholar] [CrossRef]
- Paul, K.K.; Jana, S.; Giri, P.K. Tunable and high photoluminescence quantum yield from self-decorated TiO2 quantum dots on fluorine doped mesoporous TiO2 flowers by rapid thermal annealing. Part. Part. Syst. Charact. 2018, 35, 1800198. [Google Scholar] [CrossRef]
- Hosono, E.; Matsuda, H.; Honma, I.; S Ichihara, M.; Zhou, H. ynthesis of a perpendicular TiO2 nanosheet film with the superhydrophilic property without UV irradiation. Langmuir 2007, 23, 7447–7450. [Google Scholar] [CrossRef]
- Zhao, X.; Lou, F.; Li, M.; Lou, X.; Li, Z.; Zhou, J. Sol− gel-based hydrothermal method for the synthesis of 3D flower-like ZnO microstructures composed of nanosheets for photocatalytic applications. Ceram. Int. 2014, 40, 5507–5514. [Google Scholar] [CrossRef]
- Swain, P.S.; Rao, S.B.N.; Rajendran, D.; Pal, D.; Mondal, S.; Selvaraju, S. Effect of supplementation of nano zinc oxide on nutrient retention, organ and serum minerals profile, and hepatic metallothionein gene expression in wister albino rats. Biol. Trace Elem. Res. 2019, 190, 76–86. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, H.; Wang, X.; Shen, Y.; Yang, Y.; Zhao, Y. Hydrothermal synthesis of flower cluster-shaped ZnO microstructures with sodium lignosulfonate as structure-directing agent. J. Mater. Sci. Mater. Electron. 2015, 26, 9171–9177. [Google Scholar] [CrossRef]
- De Souza, R.L.; Yu, H.; Rataboul, F.; Essayem, N. 5-Hydroxymethylfurfural (5-HMF) production from hexoses: Limits of heterogeneous catalysis in hydrothermal conditions and potential of concentrated aqueous organic acids as reactive solvent system. Challenges 2012, 3, 212–232. [Google Scholar] [CrossRef]
- Chen, F.; Fang, P.; Liu, Z.; Gao, Y.; Liu, Y.; Dai, Y.; Luo, H.; Feng, J. Dimensionality-dependent photocatalytic activity of TiO2-based nanostructures: Nanosheets with a superior catalytic property. J. Mater. Sci. 2013, 48, 5171–5179. [Google Scholar] [CrossRef]
- Bavykin, D.V.; Kulak, A.N.; Walsh, F.C. Metastable nature of titanate nanotubes in an alkaline environment. Cryst. Growth Des. 2010, 10, 4421–4427. [Google Scholar] [CrossRef]
- Caglar, Y.; Ilican, S.; Caglar, M. FESEM, XRD and DRS studies of electrochemically deposited boron doped ZnO films. Mater. Sci. Pol. 2017, 35, 824–829. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.W.; Lee, H.S.; Kim, D.H.; Jin, H.H.; Hwang, K.H.; Lee, J.K.; Park, H.C.; Yoon, S.Y. In situ synthesis of magnesium-substituted biphasic calcium phosphate and in vitro biodegradation. Mater. Res. Bull. 2012, 47, 2506–2512. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, X.; He, N.; Liu, J.; Xin, Q.; Guo, H. Operando dual beam FTIR study of hydroxyl groups and Zn Species over defective HZSM-5 zeolite supported zinc catalysts. Catalysts 2019, 9, 100. [Google Scholar] [CrossRef] [Green Version]
- Asuha, S.; Zhou, X.G.; Zhao, S. Adsorption of methyl orange and Cr (VI) on mesoporous TiO2 prepared by hydrothermal method. J. Hazard. Mater. 2010, 181, 204–210. [Google Scholar] [CrossRef]
- Yoshida, K.; Miao, L.; Tanaka, N.; Tanemura, S. Direct observation of TiO6 octahedron forming titanate nanotube by advanced transmission electron microscopy. Nanotechnology 2009, 20, 405709. [Google Scholar] [CrossRef]
- Riss, A.; Elser, M.J.; Bernardi, J.; Diwald, O. Stability and photoelectronic properties of layered titanate nanostructures. J. Am. Chem. Soc. 2009, 131, 6198–6206. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.H.; Paulson, B.; Lee, J.C.; Kim, J.K. Enhancement of local surface plasmon resonance (LSPR) effect by biocompatible metal clustering based on ZnO nanorods in Raman measurements. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 203–208. [Google Scholar] [CrossRef]
- Wang, A.N.; Teng, Y.; Hu, X.F.; Wu, L.H.; Huang, Y.J.; Luo, Y.M.; Christie, P. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties. Sci. Total Environ. 2016, 541, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.P.; Lo, S.L.; Ou, H.H.; Lai, S.W. Microwave-assisted hydrothermal synthesis of N-doped titanate nanotubes for visible-light-responsive photocatalysis. J. Hazard. Mater. 2010, 183, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; You, W.; Wu, Z.; Chen, Q.; Zhan, H. Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate. ACS Appl. Mater. Interfaces 2013, 5, 12654–12662. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Anpo, M.; Wang, X. Application of photoluminescence spectroscopy to elucidate photocatalytic reactions at the molecular level. Res. Chem. Intermed. 2020, 46, 4325–4344. [Google Scholar] [CrossRef]
- Zhang, W.F.; Zhang, M.S.; Yin, Z.; Chen, Q. Photoluminescence in anatase titanium dioxide nanocrystals. Appl. Phys. B 2000, 70, 261–265. [Google Scholar] [CrossRef]
- Pushpavathi, N.; Sandhya, K.L.; Prasad, S.K. Effect of graphene flakes, Titanium dioxide and zinc oxide nanoparticles on the birefringence, I–V characteristics and Photoluminescence properties of liquid crystal. J. Mol. Liq. 2020, 302, 112571. [Google Scholar] [CrossRef]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Lapham, D.P.; Lapham, J.L. BET surface area measurement of commercial magnesium stearate by krypton adsorption in preference to nitrogen adsorption. Int. J. Pharm. 2019, 568, 118522. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, M.; Wang, J.; Sun, R.; Yao, M.; Li, L. Facile Synthesis of Flower-Like TiO2-Based Composite for Adsorption–Photocatalytic Degradation of High-Chroma Methylene Blue. Catalysts 2021, 11, 515. https://doi.org/10.3390/catal11040515
Tian M, Wang J, Sun R, Yao M, Li L. Facile Synthesis of Flower-Like TiO2-Based Composite for Adsorption–Photocatalytic Degradation of High-Chroma Methylene Blue. Catalysts. 2021; 11(4):515. https://doi.org/10.3390/catal11040515
Chicago/Turabian StyleTian, Mengqi, Jingjing Wang, Runjun Sun, Mu Yao, and Lianbi Li. 2021. "Facile Synthesis of Flower-Like TiO2-Based Composite for Adsorption–Photocatalytic Degradation of High-Chroma Methylene Blue" Catalysts 11, no. 4: 515. https://doi.org/10.3390/catal11040515
APA StyleTian, M., Wang, J., Sun, R., Yao, M., & Li, L. (2021). Facile Synthesis of Flower-Like TiO2-Based Composite for Adsorption–Photocatalytic Degradation of High-Chroma Methylene Blue. Catalysts, 11(4), 515. https://doi.org/10.3390/catal11040515