Particle Number Emissions of a Euro 6d-Temp Gasoline Vehicle under Extreme Temperatures and Driving Conditions
Abstract
:1. Introduction
2. Results
2.1. Type-Approval Cycles
2.2. Real Time Examples
2.3. Urban Emissions
2.4. Motorway Emissions
3. Discussion
4. Materials and Methods
4.1. Instrumentation
4.2. Vehicle and Fuel
4.3. Test Cycles
- WLTC: The type 1-approval cycle: worldwide harmonized light-vehicle test cycle (WLTC).
- TfL: The Transport for London urban interpeak (TfL) cycle represented urban driving characterized by stop-and-go traffic under congested conditions.
- BAB: From the German Bundesautobahn, (“federal highway”), the BAB 130 cycle represented high-speed motorway driving up to 130 km/h with frequent and sharp acceleration from 80 to 130 km/h and from 110 to 130 km/h.
- RDE short: The short real-driving test (RDE) was a 1 h test that reproduced an on-road test on the dyno with a time share of 53% urban driving, 28% rural, and 19% motorway with a road slope ranging from −9.6 to 9.2%. The distance shares were 34%/30%/36%.
- RDE boundary: A 2 h on-road test on the dyno used a speed profile that recreated the most dynamic drive possible within the RDE boundaries of speed times acceleration, with 90% payload (RDE boundary). The urban/rural/motorway time shares were 65%/20%/15%, and the distance shares were 38%/30%/32%.
- Uphill: An uphill-only driving cycle (speed <60 km/h) was used involving modified dyno loads to simulate (i) towing a 800 kg trailer on a 5% constant slope (uphill tow) and (ii) driving on a 5% constant slope loaded to 85% payload capacity and towing a 1700 kg trailer (85% of maximum trailer weight) (uphill tow 85%).
- RDE road: The type 1A-approval on-road test (RDE road). Two different RDE compliant routes were tested. These tests were conducted on the road with portable emissions measurement system (PEMS), in contrast to the rest tests, which were conducted on the chassis dynamometer. The PEMS was the MOVE from AVL based on diffusion charging for counting particles [28]. The system included a catalytic stripper at 300 °C to remove volatiles.
4.4. Test Protocol
4.5. RDE Compliance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Complete | WLTC | RDE Short | RDE Boundary | RDE Road 1 | RDE Road 2 | |
---|---|---|---|---|---|---|
Trip characteristics | Duration (s) | 1800 | 3600 | 7088 | 6812 | 6630 |
Distance (km) | 23 | 50 | 100 | 96.4 | 99.0 | |
Mean speed (km/h) | 46.5 | 49.5 | 50.9 | 50.9 | 53.7 | |
Max speed (km/h) | 131 | 120 | 136 | 149.6 | 135.2 | |
95th v × a (m2/s3) 1 | - | - | - | - | - | |
Cold start | Yes | Yes | Yes | Yes | Yes | |
Temperatures 2 (°C) | 23 °C | all | −10 °C | 20 | 17 | |
Test mass | Inertia (kg) | 1817 | 1817 | 2150 | 1930 | 1930 |
Road load coefficients 3 | F0 (N) | 221 | 221 | 253 | - | - |
F1 (N/(km/h)) | −0.224 | −0.224 | −0.224 | - | - | |
F2 (N/(km/h)2) | 0.03147 | 0.03147 | 0.03147 | - | - | |
Slope range | (%) | No | −9.6 to 9.2% | −8.1 to 6.5% | −7.3 to 9.2% | −9.8 to 10.6% |
Urban | WLTC | TfL | Uphill Tow | Uphill Tow 85% | RDE Short | RDE Bound. | RDE Road 1 | RDE Road 2 |
---|---|---|---|---|---|---|---|---|
Duration (s) | 1022 | 2310 | 1110 | 1110 | 1850 | 4540 | 4478 | 4179 |
Distance (km) | 7.9 | 8.9 | 9.2 | 9.2 | 12.7 | 38.0 | 35.8 | 34.8 |
Mean speed (km/h) | 27.6 | 14.0 | 29.3 | 29.1 | 24.7 | 30.1 | 28.8 | 30.0 |
Max speed (km/h) | 76.6 | 52 | 53.9 | 53.0 | 48.7 | 60.8 | 60.0 | 60 |
95th v × a (m2/s3) 1 | 10.9 | 7.5 | 8.7 | 8.5 | 10.1 (11.3) | 18.7 | 8.8 (14.8) | 9.9 (12.8) |
Cold start | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Temperatures 2 (°C) | 23 °C | all | −10 °C | −7 °C | all | −10 °C | 20 | 17 |
Inertia (kg) | 1817 | 1817 | 2617 | 3570 | 1817 | 2150 | 1930 | 1930 |
F0 (N) 3 | 221 | 221 | 1592 | 2172 | 221 | 253 | - | - |
F1 (N/(km/h)) | −0.224 | −0.224 | −0.224 | −0.224 | −0.224 | −0.224 | - | - |
F2 (N/(km/h)2) | 0.03147 | 0.03147 | 0.03147 | 0.03147 | 0.03147 | 0.03147 | - | - |
Slope range (%) | No | No | 5% to F0 | 5% to F0 | −9.6 to 8.8% | −8.1 to 6.3% | −7.3 to 9.2% | −9.8 to 10.6% |
Motorway | WLTC | BAB | RDE Short | RDE Boundary | RDE Road 1 | RDE Road 2 |
---|---|---|---|---|---|---|
Duration (s) | 323 | 800 | 700 | 1091 | 881 | 1054 |
Distance (km) | 8.3 | 25 | 19.1 | 32.2 | 29.0 | 34.2 |
Mean speed (km/h) | 94.0 | 112.7 | 98.5 | 106.3 | 118.4 | 116.8 |
Max speed (km/h) | 131.3 | 130 | 121 | 138 | 148.8 | 135.2 |
95th v × a (m2/s3) 1 | 15.1 | 43.5 | 13.7 | 26.7 | 24.9 (23.0) | 21.5 (17.9) |
Cold start | No | No | No | No | No | No |
Temperatures 2 (°C) | 23 °C | all | all | −10 °C | 20 | 17 |
Inertia (kg) | 1817 | 1817 | 1817 | 2150 | 1930 | 1930 |
F0 (N) 3 | 221 | 221 | 221 | 253 | - | - |
F1 (N/(km/h)) | −0.224 | −0.224 | −0.224 | −0.224 | - | - |
F2 (N/(km/h)2) | 0.03147 | 0.03147 | 0.03147 | 0.03147 | - | - |
Slope range (%) | No | No | −5.1 to 6.4% | −5.0 to 5.3% | −6.6 to 6.2% | −7.2 to 5.8% |
References
- European Environment Agency. Air Quality in Europe: 2020 Report; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Health Effects Institute. State of Global Air 2020; Health Effects Institute: Boston, MA, USA, 2020. [Google Scholar]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef]
- Wyzga, R.E.; Rohr, A.C. Long-Term Particulate Matter Exposure: Attributing Health Effects to Individual PM Components. J. Air Waste Manag. Assoc. 2015, 65, 523–543. [Google Scholar] [CrossRef]
- Yang, Y.; Pun, V.C.; Sun, S.; Lin, H.; Mason, T.G.; Qiu, H. Particulate Matter Components and Health: A Literature Review on Exposure Assessment. J. Public Health Emerg. 2018, 2, 14. [Google Scholar] [CrossRef]
- Li, N.; Georas, S.; Alexis, N.; Fritz, P.; Xia, T.; Williams, M.A.; Horner, E.; Nel, A. A Work Group Report on Ultrafine Particles (American Academy of Allergy, Asthma & Immunology): Why Ambient Ultrafine and Engineered Nanoparticles Should Receive Special Attention for Possible Adverse Health Outcomes in Human Subjects. J. Allergy Clin. Immunol. 2016, 138, 386–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, H.-S.; Ryu, M.H.; Carlsten, C. Ultrafine Particles: Unique Physicochemical Properties Relevant to Health and Disease. Exp. Mol. Med. 2020, 52, 318–328. [Google Scholar] [CrossRef]
- IBGE (Institut Bruxellois Pour La Gestion De L’Environnement). Plan. Regional Air-Climat-Energie; Bruxelles Environnement/Département Planification Air, Climat et Energie: Brussels, Belgium, 2016; Available online: https://document.environnement.brussels/opac_css/elecfile/PLAN_AIR_CLIMAT_ENERGIE_FR_DEF.pdf (accessed on 10 May 2021).
- Donzelli, G.; Cioni, L.; Cancellieri, M.; Llopis Morales, A.; Morales Suárez-Varela, M. The Effect of the Covid-19 Lockdown on Air Quality in Three Italian Medium-Sized Cities. Atmosphere 2020, 11, 1118. [Google Scholar] [CrossRef]
- Fu, F.; Purvis-Roberts, K.L.; Williams, B. Impact of the Covid-19 Pandemic Lockdown on Air Pollution in 20 Major Cities around the World. Atmosphere 2020, 11, 1189. [Google Scholar] [CrossRef]
- Grivas, G.; Athanasopoulou, E.; Kakouri, A.; Bailey, J.; Liakakou, E.; Stavroulas, I.; Kalkavouras, P.; Bougiatioti, A.; Kaskaoutis, D.; Ramonet, M.; et al. Integrating in Situ Measurements and City Scale Modelling to Assess the Covid-19 Lockdown Effects on Emissions and Air Quality in Athens, Greece. Atmosphere 2020, 11, 1174. [Google Scholar] [CrossRef]
- Menut, L.; Bessagnet, B.; Siour, G.; Mailler, S.; Pennel, R.; Cholakian, A. Impact of Lockdown Measures to Combat Covid-19 on Air Quality over Western Europe. Sci. Total Environ. 2020, 741, 140426. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Toshniwal, D. Impact of Lockdown on Air Quality over Major Cities across the Globe during Covid-19 Pandemic. Urban. Clim. 2020, 34, 100719. [Google Scholar] [CrossRef]
- de Jesus, A.L.; Rahman, M.M.; Mazaheri, M.; Thompson, H.; Knibbs, L.D.; Jeong, C.; Evans, G.; Nei, W.; Ding, A.; Qiao, L.; et al. Ultrafine Particles and PM2.5 in the Air of Cities around the World: Are They Representative of Each Other? Environ. Int. 2019, 129, 118–135. [Google Scholar] [CrossRef]
- Mock, P. European Vehicle Market. Statistics: Pocketbook 2020/21; International Council on Clean Transportation Europe: Berlin, Germany, 2020. [Google Scholar]
- Giechaskiel, B.; Joshi, A.; Ntziachristos, L.; Dilara, P. European Regulatory Framework and Particulate Matter Emissions of Gasoline Light-Duty Vehicles: A Review. Catalysts 2019, 9, 586. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.W.; Meloche, E.; Kubsh, J.; Rosenblatt, D.; Brezny, R.; Rideout, G. Evaluation of a Gasoline Particulate Filter to Reduce Particle Emissions from a Gasoline Direct Injection Vehicle. SAE Int. J. Fuels Lubr. 2012, 5, 1277–1290. [Google Scholar] [CrossRef]
- Jang, J.; Lee, J.; Choi, Y.; Park, S. Reduction of Particle Emissions from Gasoline Vehicles with Direct Fuel Injection Systems Using a Gasoline Particulate Filter. Sci. Total Environ. 2018, 644, 1418–1428. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Lähde, T.; Pavlovic, J.; Valverde, V.; Clairotte, M.; Giechaskiel, B. Laboratory and On-Road Evaluation of a GPF-Equipped Gasoline Vehicle. Catalysts 2019, 9, 678. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Woodburn, J.; Szczotka, A.; Bielaczyc, P. Particulate Matter (PM) Emissions of Euro 5 and Euro 6 Vehicles Using Systems with Evaporation Tube or Catalytic Stripper and 23 nm or 10 nm Counters; SAE Technical Paper 2020-01-2203; SAE: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Samaras, Z.C.; Andersson, J.; Bergmann, A.; Hausberger, S.; Toumasatos, Z.; Keskinen, J.; Haisch, C.; Kontses, A.; Ntziachristos, L.D.; Landl, L.; et al. Measuring Automotive Exhaust Particles Down to 10 nm; SAE Technical Paper 2020-01-2209; SAE: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Hu, Z.; Lu, Z.; Song, B.; Quan, Y. Impact of Test Cycle on Mass, Number and Particle Size Distribution of Particulates Emitted from Gasoline Direct Injection Vehicles. Sci. Total Environ. 2021, 762, 143128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Howard, K.; Kirkman, P.; Browne, D.; Lu, Z.; He, S.; Boger, T. A Study into the Impact of Engine Oil on Gasoline Particulate Filter Performance through a Real-World Fleet Test; SAE Technical Paper 2019-01-0299; SAE: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Sterlepper, S.; Claßen, J.; Pischinger, S.; Schernus, C.; Görgen, M.; Cox, J.; Nijs, M.; Scharf, J.; Rose, D.; Boger, T. Analysis of the Emission Conversion Performance of Gasoline Particulate Filters over Lifetime; SAE Technical Paper 2019-24-0156; SAE: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Mamakos, A.; Martini, G.; Manfredi, U. Assessment of the Legislated Particle Number Measurement Procedure for a Euro 5 and a Euro 6 Compliant Diesel Passenger Cars under Regulated and Unregulated Conditions. J. Aerosol Sci. 2013, 55, 31–47. [Google Scholar] [CrossRef]
- Demuynck, J.; Favre, C.; Bosteels, D.; Hamje, H.; Andersson, J. Real-World Emissions Measurements of a Gasoline Direct Injection Vehicle without and with a Gasoline Particulate Filter; SAE Technical Paper 2017-01-0985; SAE: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.W.; Meloche, E.; Kubsh, J.; Brezny, R. Black Carbon Emissions in Gasoline Exhaust and a Reduction Alternative with a Gasoline Particulate Filter. Environ. Sci. Technol. 2014, 48, 6027–6034. [Google Scholar] [CrossRef] [PubMed]
- Giechaskiel, B.; Bonnel, P.; Perujo, A.; Dilara, P. Solid Particle Number (SPN) Portable Emissions Measurement Systems (PEMS) in the European Legislation: A Review. Int. J. Environ. Res. Public Health 2019, 16, 4819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorscheidt, F.; Sterlepper, S.; Görgen, M.; Nijs, M.; Claßen, J.; Yadla, S.K.; Maurer, R.; Pischinger, S.; Krysmon, S.; Abdelkader, A. Gasoline Particulate Filter Characterization Focusing on the Filtration Efficiency of Nano-Particulates Down to 10 nm; SAE Technical Paper 2020-01-2212; SAE: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Bannister, C.D.; Taylor, J. Analysis and Empirical Modelling to Assess and Predict the Impact of Catalyst Light-off Strategies on the Exhaust Gas Temperatures of Spark Ignition Engines. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 1644–1653. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Tian, G.; Sorniotti, A.; Karci, A.E.; Di Palo, R. Review of Thermal Management of Catalytic Converters to Decrease Engine Emissions during Cold Start and Warm Up. Appl. Therm. Eng. 2019, 147, 177–187. [Google Scholar] [CrossRef]
- Di Iorio, S.; Catapano, F.; Sementa, P.; Vaglieco, B.M.; Nicol, G.; Sgroi, M.F. Sub-23 nm Particle Emissions from Gasoline Direct Injection Vehicles and Engines: Sampling and Measure; SAE Technical Paper 2020-01-0396; SAE: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Filippo, A.D.; Maricq, M.M. Diesel Nucleation Mode Particles: Semivolatile or Solid? Environ. Sci. Technol. 2008, 42, 7957–7962. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Manfredi, U.; Martini, G. Engine Exhaust Solid Sub-23 Nm Particles: I. Literature Survey. SAE Int. J. Fuels Lubr. 2014, 7, 950–964. [Google Scholar] [CrossRef]
- An, Y.; Teng, S.; Pei, Y.; Qin, J.; Li, X.; Zhao, H. An Experimental Study of Polycyclic Aromatic Hydrocarbons and Soot Emissions from a GDI Engine Fueled with Commercial Gasoline. Fuel 2016, 164, 160–171. [Google Scholar] [CrossRef]
- Yang, J.; Roth, P.; Durbin, T.D.; Johnson, K.C.; Cocker, D.R.; Asa-Awuku, A.; Brezny, R.; Geller, M.; Karavalakis, G. Gasoline Particulate Filters as an Effective Tool to Reduce Particulate and Polycyclic Aromatic Hydrocarbon Emissions from Gasoline Direct Injection (GDI) Vehicles: A Case Study with Two GDI Vehicles. Environ. Sci. Technol. 2018, 52, 3275–3284. [Google Scholar] [CrossRef]
- Chen, L.; Liang, Z.; Zhang, X.; Shuai, S. Characterizing Particulate Matter Emissions from GDI and PFI Vehicles under Transient and Cold Start Conditions. Fuel 2017, 189, 131–140. [Google Scholar] [CrossRef]
- Zhu, R.; Hu, J.; Bao, X.; He, L.; Lai, Y.; Zu, L.; Li, Y.; Su, S. Tailpipe Emissions from Gasoline Direct Injection (GDI) and Port Fuel Injection (PFI) Vehicles at Both Low and High Ambient Temperatures. Environ. Pollut. 2016, 216, 223–234. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Mamakos, A.; Andersson, J.; Dilara, P.; Martini, G.; Schindler, W.; Bergmann, A. Measurement of Automotive Nonvolatile Particle Number Emissions within the European Legislative Framework: A Review. Aerosol Sci. Technol. 2012, 46, 719–749. [Google Scholar] [CrossRef]
- Chan, T.W.; Saffaripour, M.; Liu, F.; Hendren, J.; Thomson, K.A.; Kubsh, J.; Brezny, R.; Rideout, G. Characterization of Real-Time Particle Emissions from a Gasoline Direct Injection Vehicle Equipped with a Catalyzed Gasoline Particulate Filter during Filter Regeneration. Emiss. Control Sci. Technol. 2016, 2, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Myung, C.-L.; Kim, J.; Jang, W.; Jin, D.; Park, S.; Lee, J. Nanoparticle Filtration Characteristics of Advanced Metal Foam Media for a Spark Ignition Direct Injection Engine in Steady Engine Operating Conditions and Vehicle Test Modes. Energies 2015, 8, 1865–1881. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Bertoa, R.; Astorga, C. Impact of Cold Temperature on Euro 6 Passenger Car Emissions. Environ. Pollut. 2018, 234, 318–329. [Google Scholar] [CrossRef]
- Weber, C.; Sundvor, I.; Figenbaum, E. Comparison of Regulated Emission Factors of Euro 6 LDV in Nordic Temperatures and Cold Start Conditions: Diesel- and Gasoline Direct-Injection. Atmos. Environ. 2019, 206, 208–217. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Woodburn, J.; Szczotka, A. Investigations into Particulate Emissions from Euro 5 Passenger Cars with DISI Engines Tested at Multiple Ambient Temperatures; SAE Technical Paper 2015-24-2517; SAE: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- He, L.; Hu, J.; Zhang, S.; Wu, Y.; Zhu, R.; Zu, L.; Bao, X.; Lai, Y.; Su, S. The Impact from the Direct Injection and Multi-Port Fuel Injection Technologies for Gasoline Vehicles on Solid Particle Number and Black Carbon Emissions. Appl. Energy 2018, 226, 819–826. [Google Scholar] [CrossRef]
- Ristimäki, J.; Keskinen, J.; Virtanen, A.; Maricq, M.; Aakko, P. Cold Temperature PM Emissions Measurement: Method Evaluation and Application to Light Duty Vehicles. Environ. Sci. Technol. 2005, 39, 9424–9430. [Google Scholar] [CrossRef]
- Brandenberger, S.; Mohr, M.; Grob, K.; Neukom, H.P. Contribution of Unburned Lubricating Oil and Diesel Fuel to Particulate Emission from Passenger Cars. Atmos. Environ. 2005, 39, 6985–6994. [Google Scholar] [CrossRef]
- Zhang, L.; He, S.; Zhang, Q.; Liao, Y.; Zhang, H. Gasoline Particulate Filter Applications for Plug-in Hybrid and Traditional Cars; SAE Technical Paper 2020-01-1430; SAE: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Momenimovahed, A.; Handford, D.; Checkel, M.D.; Olfert, J.S. Particle Number Emission Factors and Volatile Fraction of Particles Emitted from On-Road Gasoline Direct Injection Passenger Vehicles. Atmos. Environ. 2015, 102, 105–111. [Google Scholar] [CrossRef]
- Chan, T.W.; Lax, D.; Gunter, G.C.; Hendren, J.; Kubsh, J.; Brezny, R. Assessment of the Fuel Composition Impact on Black Carbon Mass, Particle Number Size Distributions, Solid Particle Number, Organic Materials, and Regulated Gaseous Emissions from a Light-Duty Gasoline Direct Injection Truck and Passenger Car. Energy Fuels 2017, 31, 10452–10466. [Google Scholar] [CrossRef]
- Choi, K.; Kim, J.; Ko, A.; Myung, C.-L.; Park, S.; Lee, J. Size-Resolved Engine Exhaust Aerosol Characteristics in a Metal Foam Particulate Filter for GDI Light-Duty Vehicle. J. Aerosol Sci. 2013, 57, 1–13. [Google Scholar] [CrossRef]
- Yamada, H.; Inomata, S.; Tanimoto, H. Particle and VOC Emissions from Stoichiometric Gasoline Direct Injection Vehicles and Correlation between Particle Number and Mass Emissions. Emiss. Control Sci. Technol. 2017, 3, 135–141. [Google Scholar] [CrossRef]
- Kim, K.; Chung, W.; Kim, M.; Kim, C.; Myung, C.-L.; Park, S. Inspection of PN, CO2, and Regulated Gaseous Emissions Characteristics from a GDI Vehicle under Various Real-World Vehicle Test Modes. Energies 2020, 13, 2581. [Google Scholar] [CrossRef]
- Dimopoulos Eggenschwiler, P.; Schreiber, D.; Schröter, K. Characterization of the Emission of Particles Larger than 10 Nm in the Exhaust of Modern Gasoline and CNG Light Duty Vehicles. Fuel 2021, 291, 120074. [Google Scholar] [CrossRef]
- Lenz, M.; Cremer, M.; Guse, D.; Röhrich, H.; Pischinger, S. A Case Study on Particulate Emissions from a Gasoline Plug-in Hybrid Electric Vehicle during Engine Warm-up, Taking into Account Start–Stop Operation. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2020, 234, 2907–2922. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, W.; Yu, X. Effects of Coolant Temperature Coupled with Controlling Strategies on Particulate Number Emissions in GDI Engine under Idle Stage. Fuel 2018, 225, 1–9. [Google Scholar] [CrossRef]
- Karjalainen, P.; Pirjola, L.; Heikkilä, J.; Lähde, T.; Tzamkiozis, T.; Ntziachristos, L.; Keskinen, J.; Rönkkö, T. Exhaust Particles of Modern Gasoline Vehicles: A Laboratory and an on-Road Study. Atmos. Environ. 2014, 97, 262–270. [Google Scholar] [CrossRef]
- Tabata, K.; Takahashi, M.; Takeda, K.; Tsurumi, K.; Kiya, Y.; Tobe, S.; Ogura, A. Studies on Characteristics of Nanoparticles Generated in a Gasoline Direct-Injection Engine; SAE Technical Paper 2019-01-2328; SAE: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Tang, W.; Siani, A.; Chen, F.; Chen, B. On Developing Advanced Catalysts Systems to Meet China New Regulations; SAE Technical Paper 2019-01-0978; SAE: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Adam, F.; Olfert, J.; Wong, K.-F.; Kunert, S.; Richter, J.M. Effect of Engine-Out Soot Emissions and the Frequency of Regeneration on Gasoline Particulate Filter Efficiency; SAE Technical Paper 2020-01-1431; SAE: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Hao, C.; Wang, X.; Li, Q.; Zhai, J.; Ge, Y.; Hao, L.; Tan, J. Characteristics of Instantaneous Particle Number (PN) Emissions from Hybrid Electric Vehicles under the Real-World Driving Conditions. Fuel 2021, 286, 119466. [Google Scholar] [CrossRef]
- Saffaripour, M.; Chan, T.W.; Liu, F.; Thomson, K.A.; Smallwood, G.J.; Kubsh, J.; Brezny, R. Effect of Drive Cycle and Gasoline Particulate Filter on the Size and Morphology of Soot Particles Emitted from a Gasoline-Direct-Injection Vehicle. Environ. Sci. Technol. 2015, 49, 11950–11958. [Google Scholar] [CrossRef]
- Maricq, M.M.; Szente, J.J.; Harwell, A.L.; Loos, M.J. Impact of Aggressive Drive Cycles on Motor Vehicle Exhaust PM Emissions. J. Aerosol Sci. 2017, 113, 1–11. [Google Scholar] [CrossRef]
- Giechaskiel, B. Particle Number Emissions of a Diesel Vehicle during and between Regeneration Events. Catalysts 2020, 10, 587. [Google Scholar] [CrossRef]
- Claßen, J.; Pischinger, S.; Krysmon, S.; Sterlepper, S.; Dorscheidt, F.; Doucet, M.; Reuber, C.; Görgen, M.; Scharf, J.; Nijs, M.; et al. Statistically Supported Real Driving Emission Calibration: Using Cycle Generation to Provide Vehicle-Specific and Statistically Representative Test Scenarios for Euro 7. Int. J. Engine Res. 2020, 21, 1783–1799. [Google Scholar] [CrossRef]
- Kurtyka, K.; Pielecha, J. The Evaluation of Exhaust Emission in RDE Tests Including Dynamic Driving Conditions. Transp. Res. Procedia 2019, 40, 338–345. [Google Scholar] [CrossRef]
- Boger, T.; Glasson, T.; Rose, D.; Ingram-Ogunwumi, R.; Wu, H. Next Generation Gasoline Particulate Filters for Uncatalyzed Applications and Lowest Particulate Emissions; SAE Technical Paper 2021-01-0584; SAE: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
- Pan, J.; Hua, L.; Lin, Y.; Liu, S.; Zhang, J.; Zhao, L.; Richter, J.M.; Kunert, S.; Schoenhaber, J.; Gieshoff, J. Experimental Study on the Impact of Lubricant Ash on CN6 After-Treatment System Performance of GDI Vehicle; SAE Technical Paper 2021-01-0586; SAE: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Hu, S.; Ma, C. Effects of the Particulate Matter Index and Particulate Evaluation Index of the Primary Reference Fuel on Particulate Emissions from Gasoline Direct Injection Vehicles. Atmosphere 2019, 10, 111. [Google Scholar] [CrossRef] [Green Version]
- Raza, M.; Chen, L.; Leach, F.; Ding, S. A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques. Energies 2018, 11, 1417. [Google Scholar] [CrossRef] [Green Version]
- Zinola, S.; Leblanc, M.; Rouleau, L.; Dunand, X.; Baltzopoulou, P.; Chasapidis, L.; Deloglou, D.; Melas, A.D.; Konstandopoulos, A.G.; Rüggeberg, T.; et al. Measurement of Sub-23 nm Particles Emitted by Gasoline Direct Injection Engine with New Advanced Instrumentation; SAE Technical Paper 2019-01-2195; SAE: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Voice, A.; Fatouraie, M.; Levy, R. Fuel Effects on Engine-out Emissions Part 1—Comparing Certification and Market Gasoline Fuels; SAE Technical Paper 2021-01-0541; SAE: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
- Joshi, A. Review of Vehicle Engine Efficiency and Emissions; SAE Technical Paper 2021-01-0575; SAE: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Cresnoverh, M.; Jörgl, H.; Bergmann, A. Calibration and Accuracy of a Particle Number Measurement System. Meas. Sci. Technol. 2010, 21, 045102. [Google Scholar] [CrossRef]
- Samaras, Z.; Andersson, J.; Aakko-Saksa, P.; Cuelenaere, R.; Mellios, G. Additional Technical Issues for Euro 7 (LDV) 2021. In Proceedings of the AGVES Meeting, Webex, 27 April 2021. [Google Scholar]
Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 | Day 7 | Day 7 | Day 8 | |
---|---|---|---|---|---|---|---|---|---|
Place | Road | Lab | Lab | Lab | Lab | Lab | Lab | Lab | Lab |
Temp. | 17–20 °C | 23 °C | 23 °C | −10 °C | −30 °C | −10 °C | 5 °C | 50 °C | −7 °C |
Morning | RDE road 1 | WLTC | TfL + BAB | TfL + BAB | TfL + BAB | Uphill tow | TfL + BAB | TfL + BAB | TfL + BAB |
Evening | RDE road 2 | WLTC | RDE short | RDE short | RDE short | RDE boundary | RDE short | RDE short | Uphill tow 85% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giechaskiel, B.; Valverde, V.; Kontses, A.; Melas, A.; Martini, G.; Balazs, A.; Andersson, J.; Samaras, Z.; Dilara, P. Particle Number Emissions of a Euro 6d-Temp Gasoline Vehicle under Extreme Temperatures and Driving Conditions. Catalysts 2021, 11, 607. https://doi.org/10.3390/catal11050607
Giechaskiel B, Valverde V, Kontses A, Melas A, Martini G, Balazs A, Andersson J, Samaras Z, Dilara P. Particle Number Emissions of a Euro 6d-Temp Gasoline Vehicle under Extreme Temperatures and Driving Conditions. Catalysts. 2021; 11(5):607. https://doi.org/10.3390/catal11050607
Chicago/Turabian StyleGiechaskiel, Barouch, Victor Valverde, Anastasios Kontses, Anastasios Melas, Giorgio Martini, Andreas Balazs, Jon Andersson, Zisis Samaras, and Panagiota Dilara. 2021. "Particle Number Emissions of a Euro 6d-Temp Gasoline Vehicle under Extreme Temperatures and Driving Conditions" Catalysts 11, no. 5: 607. https://doi.org/10.3390/catal11050607
APA StyleGiechaskiel, B., Valverde, V., Kontses, A., Melas, A., Martini, G., Balazs, A., Andersson, J., Samaras, Z., & Dilara, P. (2021). Particle Number Emissions of a Euro 6d-Temp Gasoline Vehicle under Extreme Temperatures and Driving Conditions. Catalysts, 11(5), 607. https://doi.org/10.3390/catal11050607