Ni-Containing Catalysts
Funding
Conflicts of Interest
References
- Raney, M. Method of Preparing Catalytic Material. U.S. Patent 1563587, 1 December 1925. [Google Scholar]
- Everson, D.A.; Jones, B.A.; Weix, D.J. Replacing Conventional Carbon Nucleophiles with Electrophiles: Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides. J. Am. Chem. Soc. 2012, 134, 6146–6159. [Google Scholar] [CrossRef]
- Matsumoto, H.; Saito, Y.; Yoneda, Y. Contrast Between Nickel and Platinum Catalysts in Hydrogenolysis of Saturated Hydrocarbons. J. Catal. 1970, 19, 101–112. [Google Scholar] [CrossRef]
- Sakata, R.; Hosono, J.; Onishi, A.; Ueda, K. Effect of unsaturated hydrocarbons on the polymerization of butadiene with nickel catalyst. Die Makromol. Chem. 1970, 39, 73–81. [Google Scholar] [CrossRef]
- Tsou, T.T.; Kochi, J.K. Mechanism of oxidative addition. Reaction of nickel(0) complexes with aromatic halides. J. Am. Chem. Soc. 1979, 101, 6319–6332. [Google Scholar] [CrossRef]
- Chuit, C.; Felkin, H.; Frajerman, C.; Roussi, G.; Swierczewski, G. Action des organomagnesiens sur les alcools allyliques en presence de complexes du nickel: I. Synthese d’olefines. J. Organomet. Chem. 1977, 127, 371–384. [Google Scholar] [CrossRef]
- Ahuja, S.P.; Derrien, M.L.; le Page, J.F. Activity and Selectivity of Hydrotreating Catalysts. Ind. Eng. Chem. Prod. Res. Dev. 1970, 9, 272–281. [Google Scholar] [CrossRef]
- Shi, D.; Wojcieszak, R.; Paul, S.; Marceau, E. Ni Promotion by Fe: What Benefits for Catalytic Hydrogenation? Catalysts 2019, 9, 451. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, Y.; Chen, G.; He, Z. Highly Loaded and Dispersed Ni2P/Al2O3 Catalyst with High Selectivity for Hydrogenation of Acetophenone. Catalysts 2018, 8, 309. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Guan, W.; Tsang, C.-W.; Hu, H.; Liang, C. Lignin Valorizations with Ni Catalysts for Renewable Chemicals and Fuels Productions. Catalysts 2019, 9, 488. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Li, R.; Yu, H.; Zhao, X.; Dang, Q.; Jiang, J.; Wang, L.; Xi, B. Prominent Conductor Mechanism-Induced Electron Transfer of Biochar Produced by Pyrolysis of Nickel-Enriched Biomass. Catalysts 2018, 8, 573. [Google Scholar] [CrossRef] [Green Version]
- Ju, F.; Wang, M.; Wu, T.; Ling, H. The Role of NiO in Reactive Adsorption Desulfurization Over NiO/ZnO-Al2O3-SiO2 Adsorbent. Catalysts 2019, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Wu, X.; Zou, C.; Li, X.; Du, Y. NOx Removal by Selective Catalytic Reduction with Ammonia over a Hydrotalcite-Derived NiFe Mixed Oxide. Catalysts 2018, 8, 384. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Zhuang, J.; Du, J.; Gu, F.; Xu, G.; Zhong, Z.; Liu, Q.; Su, F. Highly Dispersed Ni Nanocatalysts Derived from NiMnAl-Hydrotalcites as High-Performing Catalyst for Low-Temperature Syngas Methanation. Catalysts 2019, 9, 282. [Google Scholar] [CrossRef] [Green Version]
- Ji, K.; Meng, F.; Xun, J.; Liu, P.; Zhang, K.; Li, Z.; Gao, J. Carbon Deposition Behavior of Ni Catalyst Prepared by Combustion Method in Slurry Methanation Reaction. Catalysts 2019, 9, 570. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chang, J.; Liu, T.; Cao, B.; Ding, Y.; Chen, X. Application of POCOP Pincer Nickel Complexes to the Catalytic Hydroboration of Carbon Dioxide. Catalysts 2018, 8, 508. [Google Scholar] [CrossRef] [Green Version]
- Charisiou, N.D.; Siakavelas, G.I.; Dou, B.; Sebastian, V.; Hinder, S.J.; Baker, M.A.; Polychronopoulou, K.; Goula, M.A. Nickel Supported on AlCeO3 as a Highly Selective and Stable Catalyst for Hydrogen Production via the Glycerol Steam Reforming Reaction. Catalysts 2019, 9, 411. [Google Scholar] [CrossRef] [Green Version]
- Leybo, D.V.; Arkhipov, D.I.; Firestein, K.L.; Kuznetsov, D.V. Study of Chemical and Morphological Transformations during Ni2Mo3N Synthesis via an Oxide Precursor Nitration Route. Catalysts 2018, 8, 436. [Google Scholar] [CrossRef] [Green Version]
- Mu, W.-H.; Liu, W.-Z.; Cheng, R.-J.; Dou, L.-J.; Liu, P.; Hao, Q. Computational Investigation of Nickel-Mediated B–H Activation and Regioselective Cage B–C(sp2) Coupling of o-Carborane. Catalysts 2019, 9, 548. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Chan, A.; Sun-waterhouse, D.; Moriga, T.; Idriss, H.; Waterhouse, G.I.N. Ni/TiO2: A promising low-cost photocatalytic system for solar H2 production from ethanol–water mixtures. J. Catal. 2015, 326, 43–53. [Google Scholar] [CrossRef]
- Tahir, M.; Tahir, B.; Amin, N.A.; Muhammad, A. Photocatalytic CO2 methanation over NiO/In2O3 promoted TiO2 nanocatalysts using H2O and/or H2 reductants. Energy Convers. Manag. 2016, 119, 368–378. [Google Scholar] [CrossRef]
- Guo, Y.F.; Ye, D.Q.; Chen, K.F.; He, J.C. Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam. Catal. Today 2007, 126, 328–337. [Google Scholar] [CrossRef]
- Nizio, M.; Albarazi, A.; Cavadias, S.; Amouroux, J.; Galvez, M.E.; Da Costa, P. Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts. Int. J. Hydrogen Energy 2016, 41, 11584–11592. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Mikhail, M.; Cavadias, S.; Tatoulian, M.; da Costa, P.; Ognier, S. Improvement of the activity of CO2 methanation in a hybrid plasma-catalytic process in varying catalyst particle size or under pressure. J. CO2 Util. 2021, 46, 101471. [Google Scholar] [CrossRef]
- Iwamoto, M.; Horikoshi, M.; Hashimoto, R.; Shimano, K.; Sawaguchi, T.; Teduka, H.; Matsukata, M. Higher Activity of Ni/γ-Al2O3 over Fe/γ-Al2O3 and Ru/γ-Al2O3 for Catalytic Ammonia Synthesis in Nonthermal Atmospheric-Pressure Plasma of N2 and H2. Catalysts 2020, 10, 590. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Costa, P. Ni-Containing Catalysts. Catalysts 2021, 11, 645. https://doi.org/10.3390/catal11050645
Da Costa P. Ni-Containing Catalysts. Catalysts. 2021; 11(5):645. https://doi.org/10.3390/catal11050645
Chicago/Turabian StyleDa Costa, Patrick. 2021. "Ni-Containing Catalysts" Catalysts 11, no. 5: 645. https://doi.org/10.3390/catal11050645
APA StyleDa Costa, P. (2021). Ni-Containing Catalysts. Catalysts, 11(5), 645. https://doi.org/10.3390/catal11050645