Metal Organic Frameworks for Advanced Applications
1. Introduction
2. Metal–Organic Frameworks for Advanced Applications
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bedia, J.; Muelas-Ramos, V.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodríguez, J.J.; Belver, C. A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysts 2019, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Bedia, J.; Muelas-Ramos, V.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodriguez, J.J.; Belver, C. Metal–organic frameworks for water purification. In Nanomaterials for the Detection and Removal of Wastewater Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 241–283. [Google Scholar]
- Khraisheh, M.; Almomani, F.; Walker, G. Effective Separation of Prime Olefins from Gas Stream Using Anion Pillared Metal Organic Frameworks: Ideal Adsorbed Solution Theory Studies, Cyclic Application and Stability. Catalysts 2021, 11, 510. [Google Scholar] [CrossRef]
- Mirante, F.; Mendes, R.F.; Paz, F.A.A.; Balula, S.S. High Catalytic Efficiency of a Layered Coordination Polymer to Remove Simultaneous Sulfur and Nitrogen Compounds from Fuels. Catalysts 2020, 10, 731. [Google Scholar] [CrossRef]
- Salahuddin, U.; Iqbal, N.; Noor, T.; Hanif, S.; Ejaz, H.; Zaman, N.; Ahmed, S. ZIF-67 derived MnO2 doped electrocatalyst for oxygen reduction reaction. Catalysts 2021, 11, 92. [Google Scholar] [CrossRef]
- Cheng, R.; Debroye, E.; Hofkens, J.; Roeffaers, M.B.J. Efficient photocatalytic CO2 reduction with MIL-100(Fe)-cspbbr3 composites. Catalysts 2020, 10, 1352. [Google Scholar] [CrossRef]
- Elumalai, P.; Elrefaei, N.; Chen, W.; Al-Rawashdeh, M.; Madrahimov, S.T. Testing Metal–Organic Framework Catalysts in a Microreactor for Ethyl Paraoxon Hydrolysis. Catalysts 2020, 10, 1159. [Google Scholar] [CrossRef]
- Li, Y.; Liang, C.; Zou, X.; Gu, J.; Kirillova, M.V.; Kirillov, A.M. Metal(II) coordination polymers from tetracarboxylate linkers: Synthesis, structures, and catalytic cyanosilylation of benzaldehydes. Catalysts 2021, 11, 204. [Google Scholar] [CrossRef]
- Santibáñez, L.; Escalona, N.; Torres, J.; Kremer, C.; Cancino, P.; Spodine, E. CuII- and CoII-Based MOFs: {[La2Cu3(µ-H2O)(ODA)6(H2O)3]∙3H2O}n and {[La2Co3(ODA)6(H2O)6]∙12H2O}n. The Relevance of Physicochemical Properties on the Catalytic Aerobic Oxidation of Cyclohexene. Catalysts 2020, 10, 589. [Google Scholar] [CrossRef]
- Jiao, M.; He, J.; Sun, S.; Vriesekoop, F.; Yuan, Q.; Liu, Y.; Liang, H. Fast Immobilization of Human Carbonic Anhydrase II on Ni-Based Metal-Organic Framework Nanorods with High Catalytic Performance. Catalysts 2020, 10, 401. [Google Scholar] [CrossRef] [Green Version]
- Pertiwi, R.; Oozeerally, R.; Burnett, D.L.; Chamberlain, T.W.; Cherkasov, N.; Walker, M.; Kashtiban, R.J.; Krisnandi, Y.K.; Degirmenci, V.; Walton, R.I. Replacement of Chromium by Non-Toxic Metals in Lewis-Acid MOFs: Assessment of Stability as Glucose Conversion Catalysts. Catalysts 2019, 9, 437. [Google Scholar] [CrossRef] [Green Version]
- Padmanaban, S.; Yoon, S. Surface Modification of a MOF-based Catalyst with Lewis Metal Salts for Improved Catalytic Activity in the Fixation of CO2 into Polymers. Catalysts 2019, 9, 892. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Avilés, A.; Muelas-Ramos, V.; Bedia, J.; Rodriguez, J.J.; Belver, C. Thermal Post-Treatments to Enhance the Water Stability of NH2-MIL-125(Ti). Catalysts 2020, 10, 603. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Q.; Dong, X.; Wang, Q.; Niu, Y.; Chen, Y.; Jiang, H. Enhancing the Water Resistance of Mn-MOF-74 by Modification in Low Temperature NH3-SCR. Catalysts 2019, 9, 1004. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Abednatanzi, S.; Van Der Voort, P.; Liu, Y.Y.; Leus, K. Pom@mof hybrids: Synthesis and applications. Catalysts 2020, 10, 578. [Google Scholar] [CrossRef]
- Jang, S.; Song, S.; Lim, J.H.; Kim, H.S.; Phan, B.T.; Ha, K.T.; Park, S.; Park, K.H. Application of various metal-organic frameworks (Mofs) as catalysts for air and water pollution environmental remediation. Catalysts 2020, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Elhenawy, S.E.M.; Khraisheh, M.; Almomani, F.; Walker, G. Metal-organic frameworks as a platform for CO2 capture and chemical processes: Adsorption, membrane separation, catalytic-conversion, and electrochemical reduction of CO2. Catalysts 2020, 10, 1293. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Liu, B.; Qiao, J.; Lv, L.; Gao, X.; Zhang, X.; Xu, D.; Liu, W.; Liu, J.; et al. Recent advances in MOF-based nanocatalysts for photo-promoted CO2 reduction applications. Catalysts 2019, 9, 658. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belver, C.; Bedia, J. Metal Organic Frameworks for Advanced Applications. Catalysts 2021, 11, 648. https://doi.org/10.3390/catal11050648
Belver C, Bedia J. Metal Organic Frameworks for Advanced Applications. Catalysts. 2021; 11(5):648. https://doi.org/10.3390/catal11050648
Chicago/Turabian StyleBelver, Carolina, and Jorge Bedia. 2021. "Metal Organic Frameworks for Advanced Applications" Catalysts 11, no. 5: 648. https://doi.org/10.3390/catal11050648
APA StyleBelver, C., & Bedia, J. (2021). Metal Organic Frameworks for Advanced Applications. Catalysts, 11(5), 648. https://doi.org/10.3390/catal11050648