The Sustainable Production of a Novel Laccase from Wheat Bran by Bordetella sp. JWO16: Toward a Total Environment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Laccase Production and Process Optimization
2.2. Biochemical Novelty of the Laccase
2.3. Laccase-Encoding Genes
2.4. Dye Decolorization and Denim Bleaching
2.5. Sustainability Assessment
3. Materials and Methods
3.1. The inoculum and Its Protein Estimate
3.2. Optimization of Production Conditions by Response Surface Methology
3.3. Assay for Biochemical Novelty of the Laccases and Associated Gene
3.4. Biodecolorization Potentials
3.5. Data Analysis
4. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Sheldon, R.A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 2017, 19, 18–43. [Google Scholar] [CrossRef]
- Unuofin, J.O.; Okoh, A.I.; Nwodo, U.U. Aptitude of oxidative enzymes for treatment of wastewater pollutants: A laccase perspective. Molecules 2019, 24, 2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unuofin, J.O.; Okoh, A.I.; Nwodo, U.U. Utilization of agroindustrial wastes for the production of laccase by Achromobacter xylosoxidans HWN16 and Bordetella bronchiseptica HSO16. J. Environ. Manag. 2019, 231, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Unuofin, J.O.; Okoh, A.I.; Nwodo, U.U. Maize stover as a feedstock for enhanced laccase production by gammaproteobacteria: A solution to agroindustrial waste stockpiling. Ind. Crop. Prod. 2019, 129, 611–623. [Google Scholar] [CrossRef]
- Nielsen, P.H.; Oxenbøll, K.M.; Wenzel, H. Cradle-to-gate environmental assessment of enzyme products produced industrially in Denmark by Novozymes A/S. Int. J. Life Cycle Assess. 2007, 12, 432–438. [Google Scholar] [CrossRef]
- Odeniyi, O.A.; Unuofin, J.O.; Adebayo-Tayo, B.C.; Wakil, S.M.; Onilude, A.A. Production characteristics, activity patterns and biodecolourisation applications of thermostable laccases from Corynebacterium efficiens and Enterobacter ludwigii. J. Sci. Ind. Res. 2017, 76, 562–569. [Google Scholar]
- Olajuyigbe, F.M.; Fatokun, C.O.; Oyelere, O.M. Biodelignification of some agro-residues by Stenotrophomonas sp. CFB-09 and enhanced production of ligninolytic enzymes. Biocat. Agric. Biotechnol. 2018, 15, 120–130. [Google Scholar] [CrossRef]
- Khurana, S.; Kapoor, M.; Gupta, S.; Kuhad, R.C. Statistical optimization of alkaline xylanase production from Streptomyces violaceoruber under submerged fermentation using response surface methodology. Ind. J. Microbiol. 2007, 47, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Thygesen, A.; Thomsen, A.B.; Schmidt, A.S.; Jørgensen, H.; Ahring, B.K.; Olsson, L. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme Microb. Technol. 2003, 32, 606–615. [Google Scholar] [CrossRef]
- Boruah, P.; Sarmah, P.; Das, P.K.; Goswani, T. Exploring the lignolytic potential of a new laccase producing strain Kocuria sp. PBS-1 and its application in bamboo pulp bleaching. Int. Biodeterior. Biodegrad. 2019, 143, 104726. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Lewis Farr, A.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Das, R.; Li, G.; Mai, B.; An, T. Spore cells from BPA degrading bacteria Bacillus sp. GZB displaying high laccase activity and stability for BPA degradation. Sci. Total Environ. 2018, 640–641, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Huang, L.; Li, Y.; Xu, Z.; Ge, X.; Zhang, Y.; Wang, N.; Wang, S.; Yang, W.; Lu, F.; et al. The heterologous expression, characterization, and application of a novel laccase from Bacillus velezensis. Sci. Total. Environ. 2020, 713, 136713. [Google Scholar] [CrossRef]
- Navas, L.E.; Martínez, F.D.; Taverna, M.E.; Fetherolf, M.M.; Eltis, L.D.; Nicolau, V.; Estenoz, D.; Campos, E.; Benintende, G.B.; Berretta, M.F. A thermostable laccase from Thermus sp. 2.9 and its potential for delignification of Eucalyptus biomass. AMB Express 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kepp, K.P. Halide binding and inhibition of laccase copper clusters: The role of reorganization energy. Inorg. Chem. 2015, 54, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Unuofin, J.O.; Moubasher, H.A.; Okoh, A.I.; Nwodo, U.U. Production of polyextremotolerant laccase by Achromobacter xylosoxidans HWN16 and Citrobacter freundii LLJ16. Biotechnol. Rep. 2019, 24, e00337. [Google Scholar] [CrossRef] [PubMed]
- Unuofin, J.O. Sustainability potentials of novel laccase tinctures from Stenotrophomonas maltophilia BIJ 16 and Bordetella bronchiseptica HSO16: From dye decolorization to denim bioscouring. Biotechnol. Rep. 2020, 25, 200409. [Google Scholar]
- Ausec, L.; Berini, F.; Casciello, C.; Cretoiu, M.S.; van Elsas, J.D.; Marinelli, F.; Mandic-Mulec, I. The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance. Appl. Microbiol. Biotechnol. 2017, 101, 6261–6267. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xie, Y.; Wang, R.; Fang, Z.; Fang, W.; Zhang, X.; Xiao, Y. Mechanisms of salt-induced activity enhancement of a marine-derived laccase, Lac15. Eur. Biophys. J. 2018, 47, 225–236. [Google Scholar] [CrossRef]
- Rezaei, S.; Shahverdi, A.R.; Faramarzi, M.A. Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresour. Technol. 2017, 230, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Passarini, M.R.Z.; Ottoni, C.A.; Santos, C.; Lima, N.; Sette, L.D. Induction, expression and characterisation of laccase genes from the marine-derived fungal strains Nigrospora sp. CBMAI 1330. AMB Express 2015, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Torres-Farrada, G.; Leon, A.M.M.; Rineau, F.; Alonso, L.L.L.; Sanchez-Lopez, M.I.; Thijs, S.; Colpaert, J.; Ramos-Leal, M.; Guerra, G.; Vangronsveld, J. Diversity of ligninolytic enzymes and their genes in strains of the genus Ganoderma: Applicable for biodegradation of xenobiotic compounds? Front. Microbiol. 2017, 8, 898. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Goradia, B.; Saxena, A. Bacterial laccase: Recent update on production, properties and industrial applications. 3 Biotech. 2017, 7, 323. [Google Scholar] [CrossRef]
- Yu, L.; Qiu, Y.; Yu, Y.; Wang, S. Reductive decolorization of azo dyes via in situ generation of green tea extract-iron chelate. Environ. Sci. Poll. Res. 2018, 25, 17300–17309. [Google Scholar] [CrossRef]
- Blanquez, A.; Rodriguez, J.; Brissos, V.; Mendes Martins, L.O.; Ball, A.S.; Arias, M.E.; Hernandez, M. Decolorization and detoxification of textile dyes using a versatile Streptomyces laccase-natural mediator system. Saudi J. Biol. Sci. 2019, 26, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Mani, P.; Fidal, V.T.; Bowman, K.; Breheny, M.; Chandra, T.S.; Keshavarz, T.; Kyazze, G. Degradation of azo dye (acid orange 7) in a microbial fuel cell: Comparison between anodic microbial-mediated reduction and cathodic laccase-mediated oxidation. Front. Energy Res. 2019, 7, 101. [Google Scholar] [CrossRef]
- Zhuo, R.; Yuan, P.; Yang, Y.; Zhang, S.; Ma, F.; Xhang, X. Induction of laccase by metal ions and aromatic compounds in Pleurotus ostreatus HAUCC 162 and decolorization of different synthetic dyes by the extracellular laccase. Biochem. Eng. J. 2017, 117, 62–72. [Google Scholar] [CrossRef]
- Kumari, A.; Kishor, N.; Guptasama, P. Characterization of a mildly alkalophilic and thermostable recombinant Thermus thermophilus laccase with applications in decolorization of dyes. Biotechnol. Lett. 2018, 40, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Solis-Oba, M.; Almendariz, J.; Veniegra-Gonzalez, G. Biotechnological treatment for colorless denim and textile wastewater treatment with laccase and ABTS. Rev. Int. Contam. Ambie. 2008, 24, 5–11. [Google Scholar]
- Iracheta-Cardenas, M.M.; Rocha-Pena, M.A.; Galan-Wong, L.J.; Arevalo-Nino, K.; Tova-Herrera, O.E. A Pycnoporus sanguineus laccase for denim bleaching and its comparison with an enzymatic commercial formulation. J. Environ. Manag. 2016, 177, 93–100. [Google Scholar] [CrossRef]
- Yavuz, M.; Kaya, G.; Aytekin, C. Using Ceriporiopsis subvermispora CZ-3 for laccase indigo carmine decolorization and denim bleaching. Int. Biodeterior. Biodegrad. 2014, 88, 199–205. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Zhang, X.; Geng, A. Purification and characterization of a novel manganese peroxidase from white-rot fungus Cerrena unicolor BBP6 and its application in dye decolorization and denim bleaching. Process. Biochem. 2018, 66, 222–229. [Google Scholar] [CrossRef]
- Pazarlioğlu, N.K.; Sariişik, M.; Telefoncu, A. Laccase: Production by Trametes versicolor and application to denim washing. Process. Biochem. 2005, 40, 1673–1678. [Google Scholar] [CrossRef]
- Unuofin, J.O. Treasure from dross: Application of agroindustrial wastes-derived thermo-halotolerant laccases in the simultaneous bioscouring of denim fabric and decolorization of dye bath effleunts. Ind. Crop. Prod. 2020, 147, 112251. [Google Scholar] [CrossRef]
- Unuofin, J.O.; Aladekoyi, O.J.; Odeniyi, O.A. Microbiome stimulants for crops: Indicators for an economically proficient sustainable agriculture. In Microbiome Stimulants for Crops; Woodhead Publishing: Cambridge, UK, 2021; pp. 405–416. [Google Scholar]
- Unuofin, J.O. Garbage in garbage out: The contribution of our industrial advancement to wastewater degeneration. Environ. Sci. Poll. Res. 2020, 27, 22319–22335. [Google Scholar] [CrossRef] [PubMed]
- Unuofin, J.O.; Okoh, A.I.; Nwodo, U.U. Recovery of laccase-producing gammaproteobacteria from wastewater. Biotechnol. Rep. 2019, 21, e00320. [Google Scholar] [CrossRef] [PubMed]
Independent Variables (X). | Dependent Variables (Y) Laccase Activity (U/mL) | |||||
---|---|---|---|---|---|---|
Run Order | pH | Wheat Bran (g/200 mL) | Agitation Speed (rpm) | NH4NO3 (g/200mL) | Actual Value | Predicted Value |
1 | 3 | 2 | 100 | 0.1 | 31.85 | 33.43 |
2 | 3 | 2 | 50 | 0.1 | 32.78 | 30.92 |
3 | 5 | 1 | 100 | 0.2 | 15.66 | 16.20 |
4 | 4 | 1.5 | 75 | 0.15 | 22.01 | 23.62 |
5 | 3 | 1 | 50 | 0.1 | 21.47 | 21.07 |
6 | 3 | 2 | 50 | 0.2 | 33.17 | 33.10 |
7 | 5 | 1 | 50 | 0.2 | 16.43 | 19.05 |
8 | 5 | 1 | 100 | 0.1 | 16.28 | 18.72 |
9 | 4 | 1.5 | 75 | 0.1 | 22.09 | 23.71 |
10 | 3 | 1.5 | 75 | 0.15 | 26.89 | 28.34 |
11 | 4 | 1.5 | 75 | 0.15 | 23.02 | 23.62 |
12 | 4 | 1.5 | 75 | 0.15 | 21.31 | 23.62 |
13 | 4 | 1.5 | 75 | 0.15 | 23.33 | 23.62 |
14 | 4 | 1.5 | 75 | 0.2 | 24.96 | 23.54 |
15 | 4 | 1 | 75 | 0.15 | 22.09 | 21.15 |
16 | 4 | 1.5 | 100 | 0.15 | 25.34 | 23.53 |
17 | 4 | 1.5 | 75 | 0.15 | 26.20 | 23.62 |
18 | 5 | 1 | 50 | 0.1 | 28.29 | 21.58 |
19 | 5 | 2 | 100 | 0.2 | 19.45 | 16.22 |
20 | 4 | 1.5 | 75 | 0.15 | 23.17 | 23.62 |
21 | 5 | 2 | 50 | 0.1 | 19.07 | 21.60 |
22 | 3 | 1 | 50 | 0.2 | 22.48 | 23.26 |
23 | 3 | 1 | 100 | 0.2 | 26.04 | 25.77 |
24 | 3 | 2 | 100 | 0.2 | 36.12 | 35.61 |
25 | 5 | 1.5 | 75 | 0.15 | 16.82 | 18.90 |
26 | 4 | 2 | 75 | 0.15 | 26.89 | 26.09 |
27 | 5 | 2 | 100 | 0.1 | 18.91 | 18.74 |
28 | 5 | 2 | 50 | 0.2 | 19.38 | 19.07 |
29 | 4 | 1.5 | 50 | 0.15 | 22.63 | 23.71 |
30 | 3 | 1 | 100 | 0.1 | 24.49 | 23.58 |
Sum of | Mean | F | p-Value | - | ||
---|---|---|---|---|---|---|
Source | Squares | df | Square | Value | Prob > F | |
Model | 658.63 | 7 | 94.09 | 17.96 | < 0.0001 | significant |
A-pH | 401.39 | 1 | 401.39 | 76.61 | < 0.0001 | - |
B-Wheat Bran | 109.47 | 1 | 109.47 | 20.89 | 0.0001 | - |
C-Agitation Speed | 0.14 | 1 | 0.14 | 0.026 | 0.8738 | - |
D-NH4NO3 | 0.13 | 1 | 0.13 | 0.025 | 0.8754 | - |
AB | 96.48 | 1 | 96.48 | 18.41 | 0.0003 | - |
AC | 28.81 | 1 | 28.81 | 5.50 | 0.0285 | - |
AD | 22.21 | 1 | 22.21 | 4.24 | 0.0516 | - |
Residual | 115.27 | 22 | 5.24 | - | - | - |
Lack of Fit | 101.23 | 17 | 5.95 | 2.12 | 0.2076 | not significant |
Pure Error | 14.03 | 5 | 2.81 | - | - | - |
Cor Total | 773.89 | 29 | - | - | - | - |
Metals and Surfactants | Concentration (mM) | Residual Activity (%) | Halides and Solvents | Concentration (% wv−1) | Residual Activity (%) |
---|---|---|---|---|---|
None | - | 100 | None | - | - |
Mn2+ | 1 | 110.53 ± 2.2c | NaCl | 5 | 108.40 ± 3.18 c |
- | 2.5 | 105.22 ± 1.4 b | - | 10 | 100.35 ± 2.72 a |
- | 5 | 101.84 ± 2.6 a | - | 20 | 110.97 ± 2.06 d |
- | 7 | 103.40 ± 0.8 b | - | 40 | 110.33 ± 1.86 d |
Fe3+ | 1 | 109.02 ± 1.6 b | NaF | 2 | 109.41 ± 2.37 f |
- | 2.5 | 111.36 ± 3.0 c | - | 5 | 98.89 ± 1.16 c |
- | 5 | 111.13 ± 2.6 c | - | 10 | 91.03 ± 1.64 a |
- | 7 | 107.46 ± 1.5 a | - | 20 | 90.15 ± 1.33 a |
Ba2+ | 1 | 108.40 ± 2.4 b | DMSO | 5 | 101.85 ± 2.05 a |
- | 2.5 | 112.15 ± 1.7 c | - | 10 | 101.98 ± 1.78 a |
- | 5 | 105.23 ± 2.46 a | - | 20 | 101.04 ± 1.46 a |
- | 7 | 115.82 ± 1.24 d | - | 40 | 100.93 ± 1.18 a |
Cu2+ | 1 | 113.80 ± 3.14 d | Tween 20 | 5 | 101.90 ± 2.04 b |
- | 2.5 | 122.71 ± 3.64 f | - | 10 | 100.71 ± 1.76 a |
- | 5 | 107.65 ± 1.12 c | - | 20 | 100.41 ± 1.36 a |
- | 7 | 97.78 ± 1.56 a | - | 40 | 102.48 ± 2.14 b |
EDTA | 1 | 121.64 ± 1.42 e | - | - | - |
- | 2.5 | 122.19 ± 1.2 e | - | - | - |
- | 5 | 114.09 ± 1.38 a | - | - | - |
- | 7 | 118.07 ± 2.46 b | - | - | - |
Benzoic Acid | 1 | 114.38 ± 3.16 c | - | - | - |
- | 2.5 | 108.03 ± 2.0 a | - | - | - |
- | 5 | 110.05 ± 1.4 b | - | - | - |
- | 7 | 110.93 ± 1.65 b | - | - | - |
SDS | 1 | 111.32 ± 1.52 b | - | - | - |
- | 2.5 | 107.82 ± 2.06 a | - | - | - |
- | 5 | 116.18 ± 2.32 c | - | - | - |
- | 7 | 121.84 ± 3.04 d | - | - | - |
Process | Substance | Product | Derivative | Environmental Footprint |
---|---|---|---|---|
Fermentation and separation | Citrate buffer (pH 3, 100 mM, 200 mL) | Ca. 150 mL laccase (42.1 U/mL) | Enriched Sludge | Minimum: this is because the resultant sludge is presumed to be a conglomerate of mineralized elements, nutrients and microorganisms. Furthermore, the sludge can be portrayed as a symbiosis model, as it could fulfil either bioaugmentation or biostimulation needs, or both. |
Wheat Bran (2.5 g) | ||||
NH4NO3 (0.25 g) | ||||
Mineral salts (≤ 0.1 g) | ||||
Trace elements (negligible) and inducer (≤ 0.0025 g) | ||||
Application (Denim bioscoring) | Phosphate buffer (pH 6, 100 mM, 40 mL) | Biofinished fabric | Decolorized Batch effluent | Minimum: this is because the process water could be reused for other batches, or can be used in other sectors, such as horticulture or forestry. It is assumed that the laccase-catalysed degradation of the aromatic compounds would reduce their toxicity. |
Crude laccase (3 mL) | ||||
ABTS 2 mM (500 µL) | ||||
Trichloroacetic acid 20% (40 µL) | ||||
Denim fabric (10 g) |
Independent Parameters | Level | |||
---|---|---|---|---|
Symbol | −1 | 0 | 1 | |
pH | A (X1) | 3 | 4 | 5 |
Wheat bran | B (X2) | 2 | 1.5 | 2 |
Agitation speed | C (X2) | 50 | 75 | 100 |
NH4NO3 | D (X4) | 0.1 | 0.15 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unuofin, J.O. The Sustainable Production of a Novel Laccase from Wheat Bran by Bordetella sp. JWO16: Toward a Total Environment. Catalysts 2021, 11, 677. https://doi.org/10.3390/catal11060677
Unuofin JO. The Sustainable Production of a Novel Laccase from Wheat Bran by Bordetella sp. JWO16: Toward a Total Environment. Catalysts. 2021; 11(6):677. https://doi.org/10.3390/catal11060677
Chicago/Turabian StyleUnuofin, John Onolame. 2021. "The Sustainable Production of a Novel Laccase from Wheat Bran by Bordetella sp. JWO16: Toward a Total Environment" Catalysts 11, no. 6: 677. https://doi.org/10.3390/catal11060677
APA StyleUnuofin, J. O. (2021). The Sustainable Production of a Novel Laccase from Wheat Bran by Bordetella sp. JWO16: Toward a Total Environment. Catalysts, 11(6), 677. https://doi.org/10.3390/catal11060677