Effect of Pyrolysis Temperature during Valorization of Date Stones on Physiochemical Properties of Activated Carbon and Its Catalytic Activity for the Oxidation of Cycloalkenes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Preparation of Activated Carbon (AC)
2.1.2. Preparation of Au/AC Catalyst
2.1.3. Catalyst Testing
2.2. Characterizations
3. Results and Discussion
3.1. X-ray Diffraction Analysis
3.2. Spectroscopic Analyses
3.3. Thermal Analyses (TGA-DTG and DSC)
3.4. Electron Microscopy Studies
3.5. Catalytic Conversion of Cycloalkene
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mopoung, S.; Moonsri, P.; Palas, W.; Khumpai, S. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution. Sci. World J. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed, G.O.; Yehia, M.M.; Asaad, A.A. Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid. Water Resour. Ind. 2014, 7–8, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Luo, J.; Zhu, Z.; Chen, B.; Ye, X.; Zhu, P.; Zhang, B. Multi-Scale Biosurfactant Production by Bacillus subtilis Using Tuna Fish Waste as Substrate. Catalysts 2021, 11, 456. [Google Scholar] [CrossRef]
- Abbas, N.; Khalid, H.R.; Ban, G.; Kim, H.T.; Lee, H. Silica aerogel derived from rice husk: An aggregate replacer for lightweight and thermally insulating cement-based composites. Constr. Build. Mater. 2019, 195, 312–322. [Google Scholar] [CrossRef]
- Tovar, A.K.; Godínez, L.A.; Espejel, F.; Ramírez-Zamora, R.-M.; Robles, I. Optimization of the integral valorization process for orange peel waste using a design of experiments approach: Production of high-quality pectin and activated carbon. Waste Manag. 2019, 85, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhang, L.; Zhao, B.; Qin, L.; Wang, Y.; Xing, F. The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption. Ind. Crop. Prod. 2019, 128, 290–297. [Google Scholar] [CrossRef]
- Yahya, M.A.; Al-Qodah, Z.; Ngah, C.Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sustain. Energy Rev. 2015, 46, 218–235. [Google Scholar] [CrossRef]
- Manoochehri, M.; Khorsand, A.; Hashemi, E. Role of modified activated carbon by H 3 PO 4 or K 2 CO 3 from natural adsorbent for removal of Pb(II) from aqueous solutions. Carbon Lett. 2012, 13, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Junior, M.A.A.; Matsushima, J.T.; Rezende, M.C.; Gonçalves, E.S.; Marcuzzo, J.S.; Baldan, M.R. Production and Characterization of Activated Carbon Fiber from Textile PAN Fiber. J. Aerosp. Technol. Manag. 2017, 9, 423–430. [Google Scholar] [CrossRef]
- Sonal, S.; Prakash, P.; Mishra, B.K.; Nayak, G.C. Synthesis, characterization and sorption studies of a zirconium(iv) impregnated highly functionalized mesoporous activated carbons. RSC Adv. 2020, 10, 13783–13798. [Google Scholar] [CrossRef] [Green Version]
- Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—A review. Renew. Sustain. Energy Rev. 2007, 11, 1966–2005. [Google Scholar] [CrossRef]
- Giraldo, L.; Moreno-Piraján, J.C. Synthesis of Activated Carbon Mesoporous from Coffee Waste and Its Application in Adsorption Zinc and Mercury Ions from Aqueous Solution. E-J. Chem. 2012, 9, 938–948. [Google Scholar] [CrossRef]
- Mansour, R.A.E.-G.; Simeda, M.G.; Zaatout, A.A. Removal of brilliant green dye from synthetic wastewater under batch mode using chemically activated date pit carbon. RSC Adv. 2021, 11, 7851–7861. [Google Scholar] [CrossRef]
- Mouni, L.; Merabet, D.; Bouzaza, A.; Belkhiri, L. Removal of Pb2+ and Zn2+ from the aqueous solutions by activated carbon prepared fromDates stone. Desalin. Water Treat. 2010, 16, 66–73. [Google Scholar] [CrossRef]
- Melliti, A.; Srivastava, V.; Kheriji, J.; Sillanpää, M.; Hamrouni, B. Date Palm Fiber as a novel precursor for porous activated carbon: Optimization, characterization and its application as Tylosin antibiotic scavenger from aqueous solution. Surf. Interfaces 2021, 24, 101047. [Google Scholar] [CrossRef]
- Zhang, G.; Cui, L.; Wang, Y.; Zhang, L. Homogeneous Gold-Catalyzed Oxidative Carboheterofunctionalization of Alkenes. J. Am. Chem. Soc. 2010, 132, 1474–1475. [Google Scholar] [CrossRef]
- Iglesias, A.; Muñiz, K. Oxidative Interception of the Hydroamination Pathway: A Gold-Catalyzed Diamination of Alkenes. Chem. A Eur. J. 2009, 15, 10563–10569. [Google Scholar] [CrossRef]
- Alshammari, H.; Miedziak, P.J.; Knight, D.W.; Willock, D.J.; Hutchings, G.J. The effect of ring size on the selective oxidation of cycloalkenes using supported metal catalysts. Catal. Sci. Technol. 2013, 3, 1531–1539. [Google Scholar] [CrossRef]
- Alshammari, H.; Miedziak, P.J.; Davies, T.E.; Willock, D.J.; Knight, D.W.; Hutchings, G.J. Initiator-free hydrocarbon oxidation using supported gold nanoparticles. Catal. Sci. Technol. 2014, 4, 908–911. [Google Scholar] [CrossRef]
- Xie, Z.; Guan, W.; Ji, F.; Song, Z.; Zhao, Y. Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology. J. Chem. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Shu, J.; Cheng, S.; Xia, H.; Zhang, L.; Peng, J.; Li, C.; Zhang, S. Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue. RSC Adv. 2017, 7, 14395–14405. [Google Scholar] [CrossRef] [Green Version]
- Şencan, A.; Kılıç, M. Investigation of the Changes in Surface Area and FT-IR Spectra of Activated Carbons Obtained from Hazelnut Shells by Physicochemical Treatment Methods. J. Chem. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zolfaghari, G.; Esmaili-Sari, A.; Younesi, H.; Baydokhti, R.R. Surface modification of ordered nanoporous carbons CMK-3 via a chemical oxidation approach and its application in removal of lead pollution from water. In Proceedings of the 2nd International Conference on Environmental Science and Technology, IPCBEE, Singapore, 26–28 February 2011; Volume 6, pp. 174–178. [Google Scholar]
- Moyo, M.; Nyamhere, G.; Sebata, E.; Guyo, U. Kinetic and equilibrium modelling of lead sorption from aqueous solution by activated carbon from goat dung. Desalin. Water Treat. 2014, 57, 765–775. [Google Scholar] [CrossRef]
- Jia, Y.F.; Xiao, A.B.; Thomas, K.M. Adsorption of Metal Ions on Nitrogen Surface Functional Groups in Activated Carbons. Langmuir 2002, 18, 470–478. [Google Scholar] [CrossRef]
- Mohammad, S.; Ahmed, S.; Badawi, A.; El-Desouki, D. Activated Carbon Derived from Egyptian Banana Peels for Removal of Cadmium from Water. J. Appl. Life Sci. Int. 2015, 3, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Xie, S.; Yao, J.; He, S.; Zhang, H.; Shi, D.; Pang, S.; Gao, H. Two-dimensional self-organization of 1-nonanethiol-capped gold nanoparticles. Chin. Sci. Bull. 2001, 46, 996–998. [Google Scholar] [CrossRef]
- Fujita, A.; Ryuto, H.; Matsumoto, Y.; Takeuchi, M.; Takaoka, G.H. Growth behavior of gold nanoparticles synthesized in unsaturated fatty acids by vacuum evaporation methods. Phys. Chem. Chem. Phys. 2016, 18, 5464–5470. [Google Scholar] [CrossRef] [Green Version]
- Biao, L.; Tan, S.; Meng, Q.; Gao, J.; Zhang, X.; Liu, Z.; Fu, Y. Green Synthesis, Characterization and Application of Proanthocyanidins-Functionalized Gold Nanoparticles. Nanomaterials 2018, 8, 53. [Google Scholar] [CrossRef] [Green Version]
Catalyst | Time (h) | Conversion | Selectivity to Epoxide |
---|---|---|---|
Au/AC-400 | 2 | 0.2 | 72 |
4 | 0.3 | 77 | |
6 | 0.5 | 75 | |
Au/AC-500 | 2 | 0.3 | 75 |
4 | 0.38 | 80 | |
6 | 0.5 | 82 | |
Au/AC-600 | 2 | 0.6 | 87 |
4 | 1.2 | 88 | |
6 | 1.8 | 86 | |
Au/AC-700 | 2 | 0.9 | 85 |
4 | 1.5 | 85 | |
6 | 2.1 | 88 |
Catalyst | Time (h) | Conversion | Selectivity | ||
---|---|---|---|---|---|
Epoxide | Cyclohexenone | Cyclohexenol | |||
Au/AC-400 | 2 | 0.41 | 5.3 | 50.1 | 41.3 |
4 | 0.47 | 6 | 49.8 | 40 | |
6 | 0.6 | 5.8 | 51 | 40.6 | |
Au/AC-500 | 2 | 0.4 | 5.1 | 51.2 | 42.1 |
4 | 0.6 | 5.6 | 50.4 | 41 | |
6 | 0.68 | 5.7 | 50.3 | 40.9 | |
Au/AC-600 | 2 | 0.9 | 5.9 | 49.8 | 41 |
4 | 1.6 | 6.3 | 49.8 | 41.3 | |
6 | 2.3 | 6.4 | 50.2 | 40.8 | |
Au/AC-700 | 2 | 1.3 | 6.3 | 49.7 | 39.8 |
4 | 2 | 6.5 | 50 | 39.9 | |
6 | 3.1 | 6.7 | 49.8 | 40.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, H.M.; Abbas, N. Effect of Pyrolysis Temperature during Valorization of Date Stones on Physiochemical Properties of Activated Carbon and Its Catalytic Activity for the Oxidation of Cycloalkenes. Catalysts 2021, 11, 686. https://doi.org/10.3390/catal11060686
Alshammari HM, Abbas N. Effect of Pyrolysis Temperature during Valorization of Date Stones on Physiochemical Properties of Activated Carbon and Its Catalytic Activity for the Oxidation of Cycloalkenes. Catalysts. 2021; 11(6):686. https://doi.org/10.3390/catal11060686
Chicago/Turabian StyleAlshammari, Hamed M., and Nadir Abbas. 2021. "Effect of Pyrolysis Temperature during Valorization of Date Stones on Physiochemical Properties of Activated Carbon and Its Catalytic Activity for the Oxidation of Cycloalkenes" Catalysts 11, no. 6: 686. https://doi.org/10.3390/catal11060686
APA StyleAlshammari, H. M., & Abbas, N. (2021). Effect of Pyrolysis Temperature during Valorization of Date Stones on Physiochemical Properties of Activated Carbon and Its Catalytic Activity for the Oxidation of Cycloalkenes. Catalysts, 11(6), 686. https://doi.org/10.3390/catal11060686