Synthesis and Advanced Characterization of Polymer–Protein Core–Shell Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. BSA-P4VP Core–Shell Nanoparticle Synthesis
2.2. Particle Size Characterization of CSNPs
2.3. In-Situ CSNP Characterization via USAXS
2.4. Transmission Electron Microscopy (TEM) Characterization
3. Experimental Methods
3.1. BSA-P4VP Core-Shell Nanoparticle Synthesis
3.2. DLS Characterization
3.3. USAXS/SAXS Characterization
3.4. TEM Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suthiwangcharoen, N.; Li, T.; Wu, L.; Reno, H.B.; Thompson, P.; Wang, Q. Facile Co-Assembly Process to Generate Core–Shell Nanoparticles with Functional Protein Corona. Biomacromolecules 2014, 15, 948–956. [Google Scholar] [CrossRef]
- Sarnello, E.; Liu, Y.; Palen, B.; Sun, E.; Zuo, X.; Xu, T.; Li, T. Synthesis and Characterization of Bio-Active GFP-P4VP Core–Shell Nanoparticles. Catalysts 2020, 10, 627. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, X.; Luckanagul, J.A.; Yan, J.; Nie, Y.; Lee, L.A.; Wang, Q. Polymer–Protein Core–Shell Nanoparticles for Enhanced Antigen Immunogenicity. ACS Macro Lett. 2017, 6, 442–446. [Google Scholar] [CrossRef]
- Schroffenegger, M.; Leitner, N.S.; Morgese, G.; Ramakrishna, S.N.; Willinger, M.; Benetti, E.M.; Reimhult, E. Polymer Topology Determines the Formation of Protein Corona on Core–Shell Nanoparticles. ACS Nano 2020, 14, 12708–12718. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, J.; Li, M.; Li, H.; Wang, W.; Liu, Y.; Winans, R.E.; Li, T.; Liu, T.; Yin, P. Hydrogen bonding directed co-assembly of polyoxometalates and polymers to core–shell nanoparticles. Mater. Chem. Front. 2018, 2, 2070–2075. [Google Scholar] [CrossRef]
- Russell, J.T.; Lin, Y.; Böker, A.; Su, L.; Carl, P.; Zettl, H.; He, J.; Sill, K.; Tangirala, R.; Emrick, T.; et al. Self-Assembly and Cross-Linking of Bionanoparticles at Liquid–Liquid Interfaces. Angew. Chem. Int. Ed. 2005, 44, 2420–2426. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.A.; Azzaroni, O.; Fidalgo, L.M.; Huck, W.T.S. Polymer brush resist for responsive wettability. Soft Matter 2009, 5, 2738–2745. [Google Scholar] [CrossRef]
- Binks, B.P.; Lumsdon, S.O. Catastrophic Phase Inversion of Water-in-Oil Emulsions Stabilized by Hydrophobic Silica. Langmuir 2000, 16, 2539–2547. [Google Scholar] [CrossRef]
- Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A.D.; Russell, T.P. Nanoparticle Assembly and Transport at Liquid-Liquid Interfaces. Science 2003, 299, 226–229. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Li, T.; Blom, D.; Zhao, J.; Ghoshroy, S.; Wang, Q. Synthesis and electron microscopic analysis of the self-assembly of polymer and ferritin core-shell structures. Microsc. Res. Tech. 2011, 74, 636–641. [Google Scholar] [CrossRef]
- Li, T.; Ye, B.; Niu, Z.; Thompson, P.; Seifert, S.; Lee, B.; Wang, Q. Closed-Packed Colloidal Assemblies from Icosahedral Plant Virus and Polymer. Chem. Mater. 2009, 21, 1046–1050. [Google Scholar] [CrossRef]
- Li, T.; Wu, L.; Suthiwangcharoen, N.; Bruckman, M.A.; Cash, D.; Hudson, J.S.; Ghoshroy, S.; Wang, Q. Controlled assembly of rodlike viruses with polymers. Chem. Commun. 2009, 20, 2869–2871. [Google Scholar] [CrossRef] [Green Version]
- Suthiwangcharoen, N.; Li, T.; Li, K.; Thompson, P.; You, S.; Wang, Q. M13 bacteriophage-polymer nanoassemblies as drug delivery vehicles. Nano Res. 2011, 4, 483–493. [Google Scholar] [CrossRef]
- Wagner, J.; Härtl, W.; Hempelmann, R. Characterization of Monodisperse Colloidal Particles: Comparison between SAXS and DLS. Langmuir 2000, 16, 4080–4085. [Google Scholar] [CrossRef]
- Castro, E.; Taboada, P.; Barbosa, S.; Mosquera, V. Size Control of Styrene Oxide−Ethylene Oxide Diblock Copolymer Aggregates with Classical Surfactants: DLS, TEM, and ITC Study. Biomacromolecules 2005, 6, 1438–1447. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, M.; Tabaka, W.; Möller, T.; Oppermann, A.; Wöll, D.; Volodkin, D.; Wellert, S.; Klitzing, R.v. DLS Setup for in Situ Measurements of Photoinduced Size Changes of Microgel-Based Hybrid Particles. Langmuir 2018, 34, 3597–3603. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.R.S.; Bihannic, I.; Santos, C.; Farinha, J.P.S.; Demé, B.; Leermakers, F.A.M.; Pinheiro, J.P.; Rotureau, E.; Duval, J.F.L. Structure of Multiresponsive Brush-Decorated Nanoparticles: A Combined Electrokinetic, DLS, and SANS Study. Langmuir 2015, 31, 4779–4790. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H.; Kim, C.; Zeng, X.-b.; Hwang, S.H.; Jang, J.; Ungar, G. Characterizing Size and Porosity of Hollow Nanoparticles: SAXS, SANS, TEM, DLS, and Adsorption Isotherms Compared. Langmuir 2012, 28, 15350–15361. [Google Scholar] [CrossRef]
- Aragón, S.R.; Pecora, R. Theory of dynamic light scattering from polydisperse systems. J. Chem. Phys. 1976, 64, 2395–2404. [Google Scholar] [CrossRef]
- Lorber, B.; Fischer, F.; Bailly, M.; Roy, H.; Kern, D. Protein analysis by dynamic light scattering: Methods and techniques for students. Biochem. Mol. Biol. Educ. 2012, 40, 372–382. [Google Scholar] [CrossRef]
- Goldburg, W.I. Dynamic light scattering. Am. J. Phys. 1999, 67, 1152–1160. [Google Scholar] [CrossRef] [Green Version]
- Turkevich, J.; Hubbell, H.H. Low Angle X-Ray Diffraction of Colloidal Gold and Carbon Black1a. J. Am. Chem. Soc. 1951, 73, 1–7. [Google Scholar] [CrossRef]
- Rieker, T.P.; Hubbard, P.F. The University of New Mexico/Sandia National Laboratories small-angle scattering laboratory. Rev. Sci. Instrum. 1998, 69, 3504–3509. [Google Scholar] [CrossRef]
- Jemian, P.R.; Weertman, J.R.; Long, G.G.; Spal, R.D. Characterization of 9Cr-1MoVNb steel by anomalous small-angle X-ray scattering. Acta Metall. Mater. 1991, 39, 2477–2487. [Google Scholar] [CrossRef]
- Li, T.; Senesi, A.J.; Lee, B. Small Angle X-ray Scattering for Nanoparticle Research. Chem. Rev. 2016, 116, 11128–11180. [Google Scholar] [CrossRef]
- Ilavsky, J.; Jemian, P.R.; Allen, A.J.; Zhang, F.; Levine, L.E.; Long, G.G. Ultra-small-angle X-ray scattering at the Advanced Photon Source. J. Appl. Crystallogr. 2009, 42, 469–479. [Google Scholar] [CrossRef]
- Thiele, E. Equation of State for Hard Spheres. J. Chem. Phys. 1963, 39, 474–479. [Google Scholar] [CrossRef]
- Bonse, U.; Hart, M. Tailless X-ray Single-crystal Reflection Curves Obtained by Multiple Reflection. Appl. Phys. Lett. 1965, 7, 238–240. [Google Scholar] [CrossRef]
- Ilavsky, J.; Allen, A.J.; Long, G.G.; Jemian, P.R. Effective pinhole-collimated ultrasmall-angle x-ray scattering instrument for measuring anisotropic microstructures. Rev. Sci. Instrum. 2002, 73, 1660–1662. [Google Scholar] [CrossRef]
- Cascone, M.G.; Lazzeri, L.; Carmignani, C.; Zhu, Z. Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J. Mater. Sci. Mater. Med. 2002, 13, 523–526. [Google Scholar] [CrossRef] [PubMed]
- De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Zan, X.; Sun, Y.; Zuo, X.; Li, X.; Senesi, A.; Winans, R.E.; Wang, Q.; Lee, B. Self-Assembly of Rodlike Virus to Superlattices. Langmuir 2013, 29, 12777–12784. [Google Scholar] [CrossRef] [PubMed]
- Ilavsky, J.; Jemian, P.R. Irena: Tool Suite for Modeling and Analysis of Small Angle Scattering. J. Appl. Crystallogr. 2009, 42, 347–353. [Google Scholar] [CrossRef]
- Ilavsky, J. Nika: Software for two-dimensional data reduction. J. Appl. Crystallogr. 2012, 45, 324–328. [Google Scholar] [CrossRef]
- Zhang, F.; Skoda, M.W.A.; Jacobs, R.M.J.; Martin, R.A.; Martin, C.M.; Schreiber, F. Protein Interactions Studied by SAXS: Effect of Ionic Strength and Protein Concentration for BSA in Aqueous Solutions. J. Phys. Chem. B 2007, 111, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.F.; Zanette, D.; Fischer, H.; Itri, R. A systematic study of bovine serum albumin (BSA) and sodium dodecyl sulfate (SDS) interactions by surface tension and small angle X-ray scattering. J. Colloid Interface Sci. 2003, 262, 400–408. [Google Scholar] [CrossRef]
- Ilavsky, J.; Zhang, F.; Allen, A.J.; Levine, L.E.; Jemian, P.R.; Long, G.G. Ultra-Small-Angle X-ray Scattering Instrument at the Advanced Photon Source: History, Recent Development, and Current Status. Metall. Mater. Trans. A 2013, 44, 68–76. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarnello, E.; Li, T. Synthesis and Advanced Characterization of Polymer–Protein Core–Shell Nanoparticles. Catalysts 2021, 11, 730. https://doi.org/10.3390/catal11060730
Sarnello E, Li T. Synthesis and Advanced Characterization of Polymer–Protein Core–Shell Nanoparticles. Catalysts. 2021; 11(6):730. https://doi.org/10.3390/catal11060730
Chicago/Turabian StyleSarnello, Erik, and Tao Li. 2021. "Synthesis and Advanced Characterization of Polymer–Protein Core–Shell Nanoparticles" Catalysts 11, no. 6: 730. https://doi.org/10.3390/catal11060730
APA StyleSarnello, E., & Li, T. (2021). Synthesis and Advanced Characterization of Polymer–Protein Core–Shell Nanoparticles. Catalysts, 11(6), 730. https://doi.org/10.3390/catal11060730