Special Issue “Biocatalysts: Design and Application”
Funding
Conflicts of Interest
References
- Dong, F.; Tang, X.; Yang, X.; Lin, L.; He, D.; Wei, W.; Wei, D. Immobilization of a Novel ESTBAS Esterase from Bacillus altitudinis onto an Epoxy Resin: Characterization and Regioselective Synthesis of Chloramphenicol Palmitate. Catalysts 2019, 9, 620. [Google Scholar] [CrossRef] [Green Version]
- Toro, E.C.; Rodríguez, D.F.; Morales, N.; García, L.M.; Godoy, C.A. Novel Combi-lipase Systems for Fatty Acid Ethyl Esters Production. Catalysts 2019, 9, 546. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Cao, X.; Lu, Y.; Ni, Y.; Wang, X.; Lu, Q.; Li, G.; Chen, K.; Ouyang, P.; Tan, W. Alkaline Modification of a Metal–Enzyme–Surfactant Nanocomposite to Enhance the Production of L-α-glycerylphosphorylcholine. Catalysts 2019, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- <named-content content-type="background:white">Meng, T.; Bai, R.; Wang, W.; Yang, X.; Guo, T.; Wang, Y. Enzyme-Loaded Mesoporous Silica Particles with Tuning Wettability as a Pickering Catalyst for Enhancing Biocatalysis. Catalysts 2019, 9, 78. [Google Scholar]
- Nooh, H.M.; Masomian, M.; Salleh, A.B.; Mohamad, R.; Ali, M.S.M.; Rahman, R.N.Z.R.A. Production of Thermostable T1 Lipase Using Agroindustrial Waste Medium Formulation. Catalysts 2018, 8, 485. [Google Scholar] [CrossRef] [Green Version]
- Leśniarek, A.; Chojnacka, A.; Gładkowski, W. Application of Lecitase® Ultra-Catalyzed Hydrolysis to the Kinetic Resolution of (E)-4-phenylbut-3-en-2-yl Esters. Catalysts 2018, 8, 423. [Google Scholar] [CrossRef] [Green Version]
- Djaalab, E.; Samar, M.E.H.; Zougar, S.; Kherrat, R. Electrochemical Biosensor for the Determination of Amlodipine Besylate Based on Gelatin–Polyaniline Iron Oxide Biocomposite Film. Catalysts 2018, 8, 233. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues de Melo, R.; Alnoch, R.C.; Sousa, A.S.d.; Harumi Sato, H.; Ruller, R.; Mateo, C. Cross-Linking with Polyethylenimine Confers Better Functional Characteristics to an Immobilized β-glucosidase from Exiguobacterium antarcticum B7. Catalysts 2019, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Zheng, Y.; Tang, H.; Long, Z.; Li, J.; Zhang, Z.; Liu, S.; Mao, D.; Wei, T. Highly Efficient Synthesis of 2,5-Dihydroxypyridine using Pseudomonas sp. ZZ-5 Nicotine Hydroxylase Immobilized on Immobead 150. Catalysts 2018, 8, 548. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Huang, J.; Cao, B.; Chen, L.; Song, N.; Lei, N. Study of Extraction and Enzymatic Properties of Cell-Envelope Proteinases from a Novel Wild Lactobacillus plantarum LP69. Catalysts 2018, 8, 325. [Google Scholar] [CrossRef] [Green Version]
- <named-content content-type="background:white">Yuan, Y.; Xu, J.; Zhao, Z.; Li, H.; Wang, K.; Wang, Z.; Wang, L. Design and Characterization of a Novel Artificial Peroxidase. Catalysts 2019, 9, 168. [Google Scholar]
- Chen, Y.; Xia, N.; Liu, Y.; Wang, P. Efficient Biocatalytic Preparation of Optically Pure (R)-1-[4-(Trifluoromethyl)phenyl]ethanol by Recombinant Whole-Cell-Mediated Reduction. Catalysts 2019, 9, 391. [Google Scholar] [CrossRef] [Green Version]
- Petkevičius, V.; Vaitekūnas, J.; Vaitkus, D.; Čėnas, N.; Meškys, R. Tailoring a Soluble Diiron Monooxygenase for Synthesis of Aromatic N-oxides. Catalysts 2019, 9, 356. [Google Scholar] [CrossRef] [Green Version]
- Dolejš, I.; Líšková, M.; Krasňan, V.; Markošová, K.; Rosenberg, M.; Lorenzini, F.; Marr, A.C.; Rebroš, M. Production of 1,3-Propanediol from Pure and Crude Glycerol Using Immobilized Clostridium butyricum. Catalysts 2019, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- >Zhang, Y.; Chen, J.; Chen, C.; Wu, S. Isolation of a Bacillus aryabhattai Strain for the Resolution of (R, S)-Ethyl Indoline-2-Carboxylate to Produce (S)-Indoline-2-Carboxylic Acid. Catalysts 2019, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Fan, W.; Zhang, R.; Shi, J.; Knežević-Jugović, Z.; Zhang, B. Study on Transglucosylation Properties of Amylosucrase from Xanthomonas Campestris pv. Campestris and Its Application in the Production of α-Arbutin. Catalysts 2019, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Krivoruchko, A.; Kuyukina, M.; Ivshina, I. Advanced Rhodococcus Biocatalysts for Environmental Biotechnologies. Catalysts 2019, 9, 236. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, R.A. CLEAs, Combi-CLEAs and ‘Smart’ Magnetic CLEAs: Biocatalysis in a Bio-Based Economy. Catalysts 2019, 9, 261. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateo, C.; Palomo, J.M. Special Issue “Biocatalysts: Design and Application”. Catalysts 2021, 11, 778. https://doi.org/10.3390/catal11070778
Mateo C, Palomo JM. Special Issue “Biocatalysts: Design and Application”. Catalysts. 2021; 11(7):778. https://doi.org/10.3390/catal11070778
Chicago/Turabian StyleMateo, Cesar, and Jose M. Palomo. 2021. "Special Issue “Biocatalysts: Design and Application”" Catalysts 11, no. 7: 778. https://doi.org/10.3390/catal11070778
APA StyleMateo, C., & Palomo, J. M. (2021). Special Issue “Biocatalysts: Design and Application”. Catalysts, 11(7), 778. https://doi.org/10.3390/catal11070778