V2O5-Activated Graphite Felt with Enhanced Activity for Vanadium Redox Flow Battery
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Material
3.2. Preparation of Vanadium Precursor (VP) Solution
3.3. Preparation of GF Electrodes
3.4. Material Characterization
3.5. Electrochemical Measurement
3.6. Single Cell Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.W.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Zhao, G.; Xu, C.; Ju, X.; Du, X.; Yang, Y. Parametric analysis of a hybrid solar concentrating photovoltaic/concentrating solar power (CPV/CSP) system. Appl. Energy 2017, 189, 520–533. [Google Scholar] [CrossRef]
- Ager, J.W.; Lapkin, A.A. Chemical storage of renewable energy. Science 2018, 360, 707–708. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Li, Y. Understanding mass and charge transports to create anion-ionomer-free high-performance alkaline direct formate fuel cells. Int. J. Hydrogen Energy 2019, 44, 7538–7543. [Google Scholar] [CrossRef]
- Noack, J.; Roznyatovskaya, N.; Herr, T.; Fischer, P. The Chemistry of Redox-Flow Batteries. Angew. Chem. Int. Ed. 2015, 54, 9776–9809. [Google Scholar] [CrossRef]
- Skyllas-Kazacos, M.; Chakrabarti, M.H.; Hajimolana, S.A.; Mjalli, F.S.; Saleemd, M. Progress in flow battery research and de-velopment. J. Electrochem. Soc. 2011, 158, 55–79. [Google Scholar] [CrossRef]
- Kim, K.J.; Park, M.-S.; Kim, Y.-J.; Kim, J.H.; Dou, S.X.; Skyllas-Kazacos, M. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 2015, 3, 16913–16933. [Google Scholar] [CrossRef]
- Zhang, W.; Xi, J.; Li, Z.; Zhou, H.; Liu, L.; Wu, Z.; Qiu, X. Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application. Electrochim. Acta 2013, 89, 429–435. [Google Scholar] [CrossRef]
- Davies, T.J.; Tummino, J.J. High-Performance Vanadium Redox Flow Batteries with Graphite Felt Electrodes. C J. Carbon Res. 2018, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.-L.; Tsai, P.-H.; Hsu, N.-Y.; Chen, Y.-S. Effect of Compression Ratio of Graphite Felts on the Performance of an All-Vanadium Redox Flow Battery. Energies 2019, 12, 313. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Skyllas-Kazacos, M. Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment. Electrochim. Acta 1992, 37, 1253–1260. [Google Scholar] [CrossRef]
- Zhang, Z.; Xi, J.; Zhou, H.; Qiu, X. KOH etched graphite felt with improved wettability and activity for vanadium flow bat-teries. Electrochim. Acta 2016, 218, 15–23. [Google Scholar] [CrossRef]
- Park, J.J.; Park, J.H.; Park, O.O.; Yang, J.H. Highly porous graphenated graphite felt electrodes with catalytic defects for high-performance vanadium redox flow batteries produced via NiO/Ni redox reactions. Carbon 2016, 110, 17–26. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Chen, J.-Y.; Kabtamu, D.M.; Lin, G.-Y.; Hsu, N.-Y.; Chou, Y.-S.; Wei, H.-J.; Wang, C.-H. High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application. J. Power Sources 2017, 364, 1–8. [Google Scholar] [CrossRef]
- Kabtamu, D.M.; Chen, J.Y.; Chang, Y.C.; Wang, C.H. Water-activated graphite felt as a high-performance electrode for vana-dium redox flow batteries. J. Power Sources 2017, 341, 270–279. [Google Scholar] [CrossRef]
- Abbas, S.; Lee, H.; Hwang, J.; Mehmood, A.; Shin, H.-J.; Mehboob, S.; Lee, J.-Y.; Ha, H.Y. A novel approach for forming carbon nanorods on the surface of carbon felt electrode by catalytic etching for high-performance vanadium redox flow battery. Carbon 2018, 128, 31–37. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, Y.; Yu, L.; Liu, L.; Liang, F.; Qiu, X.; Xi, J. Holey-engineered electrodes for advanced vanadium flow batteries. Nano Energy 2018, 43, 55–62. [Google Scholar] [CrossRef]
- Jiang, H.; Shyy, W.; Wu, M.; Zhang, R.; Zhao, T. A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries. Appl. Energy 2019, 233–234, 105–113. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, X.; Lv, Y.; Lin, L.; Wu, Q. Nano-catalytic layer engraved carbon felt via copper oxide etching for vanadium redox flow batteries. Carbon 2019, 153, 674–681. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.; Lv, Y.; Lin, L.; Liu, Y.; Zhou, X. Bio-inspired multiscale-pore-network structured carbon felt with enhanced mass transfer and activity for vanadium redox flow batteries. J. Mater. Chem. A 2018, 6, 20347–20355. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; He, Y.-L. Achieving gradient-pore-oriented graphite felt for vanadium redox flow batteries: Meeting improved electrochemical activity and enhanced mass transport from nano- to micro-scale. J. Mater. Chem. A 2019, 7, 10962–10970. [Google Scholar] [CrossRef]
- Zhang, L.; Yue, J.; Deng, Q.; Ling, W.; Zhou, C.-J.; Zeng, X.-X.; Zhou, C.; Wu, X.-W.; Wu, Y. Preparation of a porous graphite felt electrode for advance vanadium redox flow batteries. RSC Adv. 2020, 10, 13374–13378. [Google Scholar] [CrossRef]
- Gao, C.; Wang, N.F.; Peng, S.; Lei, Y.; Liang, X.X.; Zeng, S.S.; Zi, H.F. Influence of Fenton’s reagent treatment on electrochem-ical properties of graphite felt for all vanadium redox flow battery. Electrochim. Acta 2013, 88, 193–202. [Google Scholar] [CrossRef]
- Wu, X.; Xu, H.; Shen, Y.; Xu, P.; Lu, L.; Fu, J.; Zhao, H. Treatment of graphite felt by modified Hummers method for the posi-tive electrode of vanadium redox flow battery. Electrochim. Acta 2014, 138, 264–269. [Google Scholar] [CrossRef]
- Kim, J.; Lim, H.; Jyoung, J.-Y.; Lee, E.-S.; Yi, J.S.; Lee, D. High electrocatalytic performance of N and O atomic co-functionalized carbon electrodes for vanadium redox flow battery. Carbon 2017, 111, 592–601. [Google Scholar] [CrossRef]
- Chen, J.-Z.; Liao, W.-Y.; Hsieh, W.-Y.; Hsu, J.C.-C.; Chen, Y.-S. All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets. J. Power Sources 2015, 274, 894–898. [Google Scholar] [CrossRef]
- Shah, A.B.; Wu, Y.; Joo, Y.L. Direct addition of sulfur and nitrogen functional groups to graphite felt electrodes for improving all-vanadium redox flow battery performance. Electrochim. Acta 2019, 297, 905–915. [Google Scholar] [CrossRef]
- Chung, Y.; Noh, C.; Kwon, Y. Role of borate functionalized carbon nanotube catalyst for the performance improvement of vanadium redox flow battery. J. Power Sources 2019, 438, 227063. [Google Scholar] [CrossRef]
- Lin, C.-H.; Zhuang, Y.-D.; Tsai, D.-G.; Wei, H.-J.; Liu, T.-Y. Performance Enhancement of Vanadium Redox Flow Battery by Treated Carbon Felt Electrodes of Polyacrylonitrile using Atmospheric Pressure Plasma. Polymers 2020, 12, 1372. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, H.; Xu, P.; Wu, X.; Dong, Y.; Lu, L. Electrochemical catalytic activity of tungsten trioxide- modified graphite felt toward VO2+/VO2+ redox reaction. Electrochim. Acta 2014, 132, 37–41. [Google Scholar] [CrossRef]
- Kabtamu, D.M.; Chang, Y.-C.; Lin, G.-Y.; Bayeh, A.W.; Chen, J.-Y.; Wondimu, T.H.; Wang, C.-H. Three-dimensional annealed WO3 nanowire/graphene foam as an electrocatalytic material for all vanadium redox flow batteries. Sustain. Energy Fuels 2017, 1, 2091–2100. [Google Scholar] [CrossRef]
- Bayeh, A.W.; Kabtamu, D.M.; Chang, Y.C.; Chen, G.C.; Chen, H.Y.; Liu, T.R.; Wondimu, T.H.; Wang, K.C.; Wang, C.H. Hy-drogen-Treated Defect-Rich W18O49 Nanowire-Modified Graphite Felt as High-Performance Electrode for Vanadium Redox Flow Battery. ACS Appl. Energy Mater. 2019, 2, 2541–2551. [Google Scholar]
- Raghu, S.C.; Ulaganathan, M.; Lim, T.M.; Skyllas-Kazacos, M. Electrochemical behaviour of titanium/iridium(IV) oxide: Tan-talum pentoxide and graphite for application in vanadium redox flow battery. J. Power Sources 2013, 238, 103–108. [Google Scholar] [CrossRef]
- Liu, T.; Li, X.; Nie, H.; Xu, C.; Zhang, H. Investigation on the effect of catalyst on the electrochemical performance of carbon felt and graphite felt for vanadium flow batteries. J. Power Sources 2015, 286, 73–81. [Google Scholar] [CrossRef]
- He, Z.; Li, M.; Li, Y.; Li, C.; Yi, Z.; Zhu, J.; Dai, L.; Meng, W.; Zhou, H.; Wang, L. ZrO2 nanoparticle embedded carbon nano-fibers by electrospinning technique as advanced negative electrode materials for vanadium redox flow battery. Electrochim. Acta 2019, 309, 166–176. [Google Scholar] [CrossRef]
- Mousavihashemi, S.; Murcia-López, S.; Hosseini, M.G.; Morante, J.R.; Flox, C. Towards Production of a Highly Catalytic and Stable Graphene-Wrapped Graphite Felt Electrode for Vanadium Redox Flow Batteries. Batteries 2018, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.; Bulczak, E.; El-Nagar, G.A.; Gebhard, M.; Kubella, P.; Schnucklake, M.; Fetyan, A.; Derr, I.; Roth, C. Degradation Phenomena of Bismuth-Modified Felt Electrodes in VRFB Studied by Electrochemical Impedance Spectroscopy. Batteries 2019, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Li, X.; Bai, Z.; Zhao, Y.; Dong, L.; Song, X.; Li, D.; Langford, C.; Sun, X. Crumpled reduced graphene oxide conformally encapsulated hollow V2O5 nano/microsphere achieving brilliant lithium storage performance. Nano Energy 2016, 24, 32–44. [Google Scholar] [CrossRef]
- Shin, J.; Jung, H.; Kim, Y.; Kim, J. Carbon-coated V2O5 nanoparticles with enhanced electrochemical performance as a cathode material for lithium ion batteries. J. Alloys Compd. 2014, 589, 322–329. [Google Scholar] [CrossRef]
- Liu, B.-G.; Peng, J.-H.; Wan, R.-D.; Zhang, L.-B.; Guo, S.-H.; Zhang, S.-M. Optimization of preparing V2O5 by calcination from ammonium metavanadate using response surface methodology. Trans. Nonferrous Met. Soc. China 2011, 21, 673–678. [Google Scholar] [CrossRef]
- Pan, A.; Zhang, J.G.; Nie, Z.; Cao, G.Z.; Arey, B.W.; Li, G.S.; Liang, S.Q.; Liu, J. Facile synthesized nanorod structured vana-dium pentoxide for high-rate lithium batteries. J. Mater. Chem. C 2010, 20, 9193–9199. [Google Scholar] [CrossRef]
Sample | C 1s (%) | O 1s (%) | O/C Ratio | C=O (%) (531.5 eV) | C–OH (%) (532.5 eV) | COOH (%) (533.8 eV) | H–O–H (%) (534.6 eV) |
---|---|---|---|---|---|---|---|
GF | 92.66 | 7.34 | 0.08 | 40.10 | 46.37 | 11.28 | 2.26 |
TGF | 87.66 | 12.34 | 0.14 | 58.75 | 25.25 | 16.00 | 0.00 |
V0-EGF | 88.64 | 11.36 | 0.13 | 54.57 | 35.34 | 10.09 | 0.00 |
V3-EGF | 83.06 | 16.94 | 0.20 | 43.14 | 41.99 | 14.87 | 0.00 |
V10-EGF | 92.66 | 7.34 | 0.24 | 46.94 | 39.36 | 13.63 | 0.07 |
Sample | Ipa (mA/cm2) | Ipc (mA/cm2) | Epa(V) | Epc(V) | Ipa/−Ipc | ΔE(V) |
---|---|---|---|---|---|---|
GF | 269.88 | −179.95 | 1.42 | 0.30 | 1.500 | 1.12 |
TGF | 271.09 | −265.61 | 1.26 | 0.51 | 1.021 | 0.75 |
V0-EGF | 256.49 | −247.95 | 1.26 | 0.54 | 1.034 | 0.72 |
V3-EGF | 272.90 | −261.11 | 1.26 | 0.57 | 1.045 | 0.69 |
V10-EGF | 294.23 | −293.98 | 1.20 | 0.57 | 1.001 | 0.63 |
Sample | Charge Capacity (mAh) | Discharge Capacity (mAh) | EE (%) | CE (%) | VE (%) |
---|---|---|---|---|---|
GF | 201.42 | 199.59 | 55.57 | 96.53 | 57.57 |
TGF | 610.60 | 590.59 | 62.39 | 96.72 | 64.51 |
V3-EGF | 716.92 | 689.18 | 64.37 | 96.13 | 66.96 |
V10-EGF | 708.50 | 678.35 | 63.13 | 95.74 | 65.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-H.; Hung, I.-M.; Wu, C.-Y. V2O5-Activated Graphite Felt with Enhanced Activity for Vanadium Redox Flow Battery. Catalysts 2021, 11, 800. https://doi.org/10.3390/catal11070800
Wang Y-H, Hung I-M, Wu C-Y. V2O5-Activated Graphite Felt with Enhanced Activity for Vanadium Redox Flow Battery. Catalysts. 2021; 11(7):800. https://doi.org/10.3390/catal11070800
Chicago/Turabian StyleWang, Yi-Hung, I-Ming Hung, and Cheng-Yeou Wu. 2021. "V2O5-Activated Graphite Felt with Enhanced Activity for Vanadium Redox Flow Battery" Catalysts 11, no. 7: 800. https://doi.org/10.3390/catal11070800
APA StyleWang, Y. -H., Hung, I. -M., & Wu, C. -Y. (2021). V2O5-Activated Graphite Felt with Enhanced Activity for Vanadium Redox Flow Battery. Catalysts, 11(7), 800. https://doi.org/10.3390/catal11070800