Novel (S)-Selective Hydrolase from Arthrobacter sp. K5 for Kinetic Resolution of Cyclic Amines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of Microorganisms
2.2. Optimization of Culture Conditions and Kinetic Resolution Using Optimized Whole Cells
2.3. Properties of the Hydrolase
2.4. Substrate Specificity
2.5. (S)-2-MPI Synthesis Using Recombinant Cells
3. Materials and Methods
3.1. General Information
3.2. N-Pivaloyl-2-MPI Synthesis
3.3. N-Acyl Cyclic Amines Synthesis
3.4. Hydrolysis of N-Pivaloyl-2-Methylpiperidine Using Whole Cells of Arthrobacter sp. K5
3.5. Substrate Specificity of Purified Enzyme
3.6. Genome Sequence of Arthrobacter sp. K5
3.7. Hydrolase Overexpression in Rhodococcus Erythropolis L88
3.8. (S)-2-MPI Synthesis Using Recombinant Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Węglarz, I.; Michalak, K.; Mlynarski, J. Zinc-Catalyzed Asymmetric Hydrosilylation of Cyclic Imines: Synthesis of Chiral 2-Aryl-Substituted Pyrrolidines as Pharmaceutical Building Blocks. Adv. Synth. Catal. 2021, 363, 1317–1321. [Google Scholar] [CrossRef]
- Jain, P.; Verma, P.; Xia, G.; Yu, J. Enantioselective amine α-functionalization via palladium-catalysed C–H arylation of thioamides. Nat. Chem. 2017, 9, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Clark, R.B.; Deng, Y.; He, M.; Plamondon, L.; Sun, C.; Xiao, X.; Ronn, M. Tetracycline Compounds. U.S. Patent 20120135968A1, 31 May 2012. [Google Scholar]
- Eis, K.; Ackerstaff, J.; Wagner, S.; Basting, D.; Golz, S.; Bender, E.; Li, V.M.; Lienau, P.; Liu, N.; Siegel, F.; et al. Amido-Substituted Azole Compounds. WO Patent 2015150449A2, 8 October 2015. [Google Scholar]
- Fischer, J.P.; Fell, J.B.; Blake, J.F.; Hinklin, R.J.; Mejia, M.J.; Hicken, E.J.; Chicarelli, M.J.; Gaudino, J.J.; Vigers, G.P.A.; Burgess, L.E.; et al. KRas G12C Inhibitors. WO Patent 2017201161A1, 23 November 2017. [Google Scholar]
- Gayda, R.C.; Henderson, G.W.; Markovitz, A. Neuroactive drugs inhibit trypsin and outer membrane protein processing in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 1979, 76, 2138–2142. [Google Scholar] [CrossRef] [Green Version]
- Schneegurt, M.A.; Henry, M.J. Effects of piperalin and fenpropimorph on sterol biosynthesis in Ustilago maydis. Pestic. Biochem. Physiol. 1992, 43, 45–52. [Google Scholar] [CrossRef]
- Green, K.; Kim, K. Acute dose response of intraocular pressure to topical and oral cannabinoids. Proc. Soc. Exp. Biol. Med. 1977, 154, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Klun, J.A.; Schmidt, W.F.; Debboun, M. Stereochemical Effects in an Insect Repellent. J. Med. Entomol. 2001, 38, 809–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klun, J.A.; Khrimian, A.; Margaryan, A.; Kramer, M.; Debboun, M. Synthesis and Repellent Efficacy of a New Chiral Piperidine Analog: Comparison with Deet and Bayrepel Activity in Human-Volunteer Laboratory Assays Against Aedes aegypti and Anopheles stephensi. J. Med. Entomol. 2003, 40, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Klun, J.A.; Khrimian, A.; Debboun, M. Repellent and Deterrent Effects of SS220, Picaridin, and Deet Suppress Human Blood Feeding by Aedes aegypti, Anopheles stephensi, and Phlebotomus papatasi. J. Med. Entomol. 2006, 43, 34–39. [Google Scholar] [CrossRef]
- Frances, S.P.; Mackenzie, D.O.; Klun, J.A.; Debboun, M. Laboratory and Field Evaluation of SS220 and Deet Against Mosquitoes in Queensland, Australia. J. Am. Mosq. Control Assoc. 2009, 25, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Mitsukura, K.; Suzuki, M.; Shinoda, S.; Kuramoto, T.; Yoshida, T.; Nagasawa, T. Purification and characterization of a novel (R)-imine reductase from Streptomyces sp. GF3587. Biosci. Biotechnol. Biochem. 2011, 75, 1778–1782. [Google Scholar] [CrossRef] [Green Version]
- Mitsukura, K.; Kuramoto, T.; Yoshida, T.; Kimoto, N.; Yamamoto, H.; Nagasawa, T. A NADPH-dependent (S)-imine reductase (SIR) from Streptomyces sp. GF3546 for asymmetric synthesis of optically active amines: Purification, characterization, gene cloning, and expression. Appl. Microbiol. Biotechnol. 2013, 97, 8079–8086. [Google Scholar] [CrossRef] [PubMed]
- Leipold, F.; Hussain, S.; Ghislieri, D.; Turner, N.J. Asymmetric Reduction of Cyclic Imines Catalyzed by a Whole-Cell Biocatalyst Containing an (S)-Imine Reductase. ChemCatChem 2013, 5, 3505–3508. [Google Scholar] [CrossRef]
- Hussain, S.; Leipold, F.; Man, H.; Wells, E.; France, S.P.; Mulholland, K.R.; Grogan, G.; Turner, N.J. An (R)-Imine Reductase Biocatalyst for the Asymmetric Reduction of Cyclic Imines. ChemCatChem 2015, 7, 579–583. [Google Scholar] [CrossRef] [Green Version]
- Siedlecka, R. Recent developments in optical resolution. Tetrahedron 2013, 69, 6331–6363. [Google Scholar] [CrossRef]
- Domínguez de María, P.; de Gonzalo, G.; Alcántara, A.R. Biocatalysis as Useful Tool in Asymmetric Synthesis: An Assessment of Recently Granted Patents (2014–2019). Catalysts 2019, 9, 802. [Google Scholar] [CrossRef] [Green Version]
- Musa, M.M. Enzymatic racemization of alcohols and amines: An approach for bi-enzymatic dynamic kinetic resolution. Chirality 2020, 32, 147–157. [Google Scholar] [CrossRef]
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem. Int. Ed. 2020, 59, 2–34. [Google Scholar] [CrossRef] [PubMed]
- Gotor-Fernández, V.; Fernández-Torres, P.; Gotor, V. Chemoenzymatic preparation of optically active secondary amines: A new efficient route to enantiomerically pure indolines. Tetrahedron Asymmetry 2006, 17, 2558–2564. [Google Scholar] [CrossRef]
- Stirling, M.; Blacker, J.; Page, M.I. Chemoenzymatic dynamic kinetic resolution of secondary amines. Tetrahedron Lett. 2007, 48, 1247–1250. [Google Scholar] [CrossRef]
- Hu, S.; Tat, D.; Martinez, C.A.; Yazbeck, D.R.; Tao, J. An efficient and practical chemoenzymatic preparation of optically active secondary amines. Org. Lett. 2005, 7, 4329–4331. [Google Scholar] [CrossRef] [PubMed]
- Liljeblad, A.; Lindborg, J.; Kanerva, A.; Katajisto, J.; Kanerva, L.T. Enantioselective lipase-catalyzed reactions of methyl pipecolinate: Transesterification and N-acylation. Tetrahedron Lett. 2002, 43, 2471–2474. [Google Scholar] [CrossRef]
- Binanzer, M.; Hsieh, S.; Bode, J.W. Catalytic Kinetic Resolution of Cyclic Secondary Amines. J. Am. Chem. Soc. 2011, 133, 19698–19701. [Google Scholar] [CrossRef]
- Wanner, B.; Kreituss, I.; Gutierrez, O.; Kozlowski, M.C.; Bode, J.W. Catalytic Kinetic Resolution of Disubstituted Piperidines by Enantioselective Acylation: Synthetic Utility and Mechanistic Insights. J. Am. Chem. Soc. 2015, 137, 11491–11497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Sehemi, A.G.; Atkinson, R.S.; Fawcett, J.; Russell, D.R. 3-(N,N-Diacylamino)quinazolin-4(3H)-ones as enantioselective acylating agents for amines. Tetrahedron Lett. 2000, 41, 2239–2242. [Google Scholar] [CrossRef]
- Saito, K.; Miyashita, H.; Akiyama, T. Chiral phosphoric acid catalyzed oxidative kinetic resolution of cyclic secondary amine derivatives including tetrahydroquinolines by hydrogen transfer to imines. Chem. Commun. 2015, 51, 16648–16651. [Google Scholar] [CrossRef]
- Lackner, A.D.; Samant, A.V.; Toste, F.D. Single-Operation Deracemization of 3H-Indolines and Tetrahydroquinolines Enabled by Phase Separation. J. Am. Chem. Soc. 2013, 135, 14090–14093. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, M.; Fujita, K.; Yagishita, F.; Unosawa, A.; Mino, T.; Fujita, T. Kinetic resolution of racemic amines using provisional molecular chirality generated by spontaneous crystallization. Chem. Commun. 2011, 47, 4267–4269. [Google Scholar] [CrossRef] [PubMed]
- Perdicchia, D.; Christodoulou, M.S.; Fumagalli, G.; Calogero, F.; Marucci, C.; Passarella, D. Enzymatic Kinetic Resolution of 2-Piperidineethanol for the Enantioselective Targeted and Diversity Oriented Synthesis. Int. J. Mol. Sci. 2016, 17, 17. [Google Scholar] [CrossRef] [Green Version]
- Saxon, R.E.; Leisch, H.; Hudlicky, T. Preliminary investigation of the yeast-mediated reduction of β-keto amides derived from cyclic amines as potential resolution methodology. Tetrahedron Asymmetry 2008, 19, 672–681. [Google Scholar] [CrossRef]
- Solís, A.; Nava, A.; Pérez, H.I.; Manjarrez, N.; Luna, H.; Cassani, J. Enzymatic Hydrolysis of N–protected 2–Hydroxymethylpiperidine Acetates. J. Mex. Chem. Soc. 2008, 52, 181–184. [Google Scholar]
- Nakashima, N.; Tamura, T. A Novel System for ExpressingRecombinant Proteins Over a WideTemperature Range From 4 to 35 °C. Biotechnol. Bioeng. 2004, 86, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Cappelletti, M.; Presentato, A.; Piacenza, E.; Firrincieli, A.; Turner, R.J.; Zannoni, D. Biotechnology of Rhodococcus for the production of valuable compounds. Appl. Microbiol. Biotechnol. 2020, 104, 8567–8594. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Fujimoto, Y.; Girdaukas, G.; Sih, C.J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 1982, 104, 7294–7299. [Google Scholar] [CrossRef]
Substrate | Relative Activity (%) 3 | Conversion (%) | Optical Purity (% ee) |
---|---|---|---|
N-Benzoyl-2-MPI | 100 | 21 (48 h) 5 | 63 (S) |
N-Pivaloyl-2-MPI | 102 | 31 (48 h) 5 | 88 (S) |
N-Acetyl-2-MPI | 2480 | 46 (2 h) 5 | 43 (S) |
N-Crotonoyl-2-MPI | 1210 | 56 (4 h) 5 | 55 (S) |
N-Benzoylpiperidine | 81200 | n.d. 4 | n.d. |
N-Benzoyl-3-MPI | 7640 | 50 (2 h) 5 | 0 |
N-Pivaloyl-3-MPI | 3120 | 42 (24 h) 5 | 0 |
N-Benzoyl-4-MPI | 9320 | n.d. | n.d. |
N-Benzoylpyrrolidine | 1280 | n.d. | n.d. |
N-Benzoyl-2-methylpyrrolidine | 409 | 49 (24 h) 5 | 11 (R) |
N-Benzoyl-2-methylindoline 2 | 40 | 53 (48 h) 5 | 50 (n.d. 4) |
N-Acetyl-2-methylindoline 2 | 101 | 56 (3 h) 5 | 45 (n.d.) |
N-Pivaloyl-2-methylindoline 2 | 0 | n.d. | n.d. |
N-Acetyl-1,2,3,4-tetrahydroquinaldine 2 | trace | n.d. | n.d. |
N-Benzoyl-1,2,3,4-tetrahydroquinaldine 2 | 0 | n.d. | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukawa, Y.; Mizuno, Y.; Kawade, K.; Mitsukura, K.; Yoshida, T. Novel (S)-Selective Hydrolase from Arthrobacter sp. K5 for Kinetic Resolution of Cyclic Amines. Catalysts 2021, 11, 809. https://doi.org/10.3390/catal11070809
Fukawa Y, Mizuno Y, Kawade K, Mitsukura K, Yoshida T. Novel (S)-Selective Hydrolase from Arthrobacter sp. K5 for Kinetic Resolution of Cyclic Amines. Catalysts. 2021; 11(7):809. https://doi.org/10.3390/catal11070809
Chicago/Turabian StyleFukawa, Yuta, Yuta Mizuno, Keisuke Kawade, Koichi Mitsukura, and Toyokazu Yoshida. 2021. "Novel (S)-Selective Hydrolase from Arthrobacter sp. K5 for Kinetic Resolution of Cyclic Amines" Catalysts 11, no. 7: 809. https://doi.org/10.3390/catal11070809
APA StyleFukawa, Y., Mizuno, Y., Kawade, K., Mitsukura, K., & Yoshida, T. (2021). Novel (S)-Selective Hydrolase from Arthrobacter sp. K5 for Kinetic Resolution of Cyclic Amines. Catalysts, 11(7), 809. https://doi.org/10.3390/catal11070809