Positive Effect of Antagonistic Additives on the Homogeneous Catalytic Etherification Reaction of Glycerol
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Etherification Reaction of Glycerol
3.3. Analysis of the Reaction Mixtures
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ayoub, M.; Khayoon, M.S.; Abdullah, A.Z. Synthesis of oxygenated fuel additives via the solventless etherification of glycerol. Bioresour. Technol. 2012, 112, 308–312. [Google Scholar] [CrossRef]
- García-Sancho, C.; Moreno-Tost, R.; Mérida-Robles, J.M.; Santamaría-González, J.; Jiménez-López, A.; Torres, P.M. Etherification of glycerol to polyglycerols over MgAl mixed oxides. Catal. Today 2011, 167, 84–90. [Google Scholar] [CrossRef]
- Shi, Y.; Dayoub, W.; Chen, G.; Lemaire, M. Selective synthesis of 1-O-alkyl glycerol and diglycerol ethers by reductive alkylation of alcohols. Green Chem. 2010, 12, 2189–2195. [Google Scholar] [CrossRef]
- USA National Biodiesel Board. Introduction to Biodiesel and Glossary of Terms; USA National Biodiesel Board: Washington, DC, USA, 2015; pp. 37–40. [Google Scholar]
- Pala-Rosas, I.; Contreras, J.L.; Salmones, J.; Zeifert, B.; Lopez-Medina, R.; Navarrete-Bolanos, J.; Hernandez-Ramirez, S.; Perez-Cabrera, J.; de Oca, A.A.F.M. Catalytic deactivation of HY zeolites in the dehydration of glycerol to acrolein. Catalysts 2021, 11, 360. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L. Mesoporous silica supported phosphotungstic acid catalyst for glycerol dehydration to acrolein. Catal. Today 2021, 376, 55–64. [Google Scholar] [CrossRef]
- Kostyniuk, A.; Bajec, D.; Djinovic, P.; Likozar, B. Allyl alcohol production by gas phase conversion reactions of glycerol over bifunctional hierarchical zeolite-supported bi- and tri-metallic catalysts. Chem. Eng. J. 2020, 397, 125430. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, Y.; Liu, H.; Long, Y.; Wang, Z.; Hou, Z. Direct synthesis of allyl alcohol from glycerol over CoFe alloy. Appl. Catal. B Environ. 2020, 277, 119187. [Google Scholar] [CrossRef]
- Herrero, Y.R.; Ullah, A. Rapid, metal-free, catalytic conversion of glycerol to allyl monomers and polymers. ACS Sustain. Chem. Eng. 2021, 9, 9474–9485. [Google Scholar] [CrossRef]
- Spadlo, M.; Dziwinski, E.; Wasilewski, J. Studies on synthesis of 1, 3-dichloropropane. Przem. Chem. 1994, 73, 306–307. [Google Scholar]
- Razali, N.; McGregor, J. Improving product yield in the direct carboxylation of glycerol with CO2 through the tailored selection of dehydrating agents. Catalysts 2021, 11, 138. [Google Scholar] [CrossRef]
- Arora, S.; Gosu, V.; Kumar, U.K.A.; Subbaramaiah, V. Valorization of glycerol into glycerol carbonate using the stable heterogeneous catalyst of Li/MCM-41. J. Clean. Prod. 2021, 295, 124637. [Google Scholar] [CrossRef]
- Bartoli, M.; Zhu, C.; Chae, M.; Bressler, D.C. Value-added products from urea glycerolysis using a heterogeneous biosolids-based catalyst. Catalysts 2018, 8, 373. [Google Scholar] [CrossRef] [Green Version]
- Kostyniuk, A.; Bajec, B.; Djinovic, P.; Likozar, B. One-step synthesis of glycidol from glycerol in a gas-phase packed-bed continuous flow reactor over HZSM-5 zeolite catalysts modified by CsNO3. Chem. Eng. J. 2020, 394, 124945. [Google Scholar] [CrossRef]
- Nda-Umar, U.I.; Ramli, I.; Taufiq-Yap, Y.H.; Muhamad, E.N. An overview of recent research in the conversion of glycerol into biofuels, fuel additives and other bio-based chemicals. Catalysts 2019, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Varma, R.S.; Len, C. Glycerol valorization under continuous flow conditions-recent advances. Curr. Opin. Green Sustain. Chem. 2019, 15, 83–90. [Google Scholar] [CrossRef]
- Nda-Umar, U.I.; Ramli, I.; Muhamad, E.N.; Azri, N.; Taufiq-Yap, Y.H. Optimization and characterization of mesoporous sulfonated carbon catalyst and its application in modeling and optimization of acetin production. Molecules 2020, 25, 5221. [Google Scholar] [CrossRef]
- Nda-Umar, U.I.; Ramli, I.B.; Muhamad, E.N.; Azri, N.; Amadi, U.F.; Taufiq-Yap, Y.H. Influence of heterogeneous catalysts and reaction parameters on the acetylation of glycerol to acetin: A review. Appl. Sci. 2020, 10, 7155. [Google Scholar] [CrossRef]
- Barrault, J.; Clacens, J.; Pouilloux, Y. Selective oligomerization of glycerol over mesoporous catalysts. Top. Catal. 2004, 27, 137–142. [Google Scholar] [CrossRef]
- Zafari, R.; Kharat, A.N. Evaluation of mesoporous modified ferrierite zeolite performance in production of diglycerol from glycerol. Rev. Roum. Chim. 2018, 63, 95–101. [Google Scholar]
- Lee, J.H.; Park, S.K.; Ryu, J.; Lee, H.; Lee, J.S. Solventless Catalytic Etherification of Glycerol Using Acetate Salts as Efficient Catalysts. Bull. Korean Chem. Soc. 2018, 39, 722–725. [Google Scholar] [CrossRef]
- Ebadipour, N.; Paul, S.; Katryniok, B.; Dumeignil, F. Alkaline-based catalysts for glycerol polymerization reaction: A review. Catalysts 2020, 10, 1021. [Google Scholar] [CrossRef]
- Aloui, M.; Cecilla, J.A.; Moreno-Tost, R.; Ghorbel, S.B.; Zina, M.S.; Rodriguez-Castellon, E. Glycerol etherification towards selective diglycerol over mixed oxides derived from hydrotalcites: Effect of Ni loading. J. Sol-Gel Sci. Technol. 2021, 97, 351–364. [Google Scholar] [CrossRef]
- Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chem. 2008, 10, 13–30. [Google Scholar] [CrossRef]
- Salehpour, S.; Dubé, M.A. Towards the sustainable production of higher-molecular-weight polyglycerol. Macromol. Chem. Phys. 2011, 212, 1284–1293. [Google Scholar] [CrossRef]
- Calderón, M.; Quadir, M.A.; Sharma, S.K.; Haag, R. Dendritic polyglycerols for biomedical applications. Adv. Mater. 2010, 22, 190–218. [Google Scholar] [CrossRef] [PubMed]
- Wilms, D.; Stiriba, S.; Frey, H. Hyperbranched polyglycerols: From the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Acc. Chem. Res. 2010, 43, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Montassier, C.; Giraud, D.; Barbier, J. Polyol conversion by liquid phase heterogeneous catalysis over metals. In Anonymous Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1988; pp. 165–170. [Google Scholar]
- Sohounlove, D.K.; Montassier, C.; Barbeer, J. Reaction Kinetics. Catal. Lett. 1983, 22, 391. [Google Scholar]
- Alcantara, R.; Canoira, L.; Fernandez-Martın, C.; Franco, M.J.; Martinez-Silva, J.I.; Navarro, A. Synthesis of 1-tert-butoxy-2-propanol (PGTBE) from propyleneglycol and isobutene in a packed trickle-bed reactor on acid catalysts. React. Funct. Polym. 2000, 43, 97–104. [Google Scholar] [CrossRef]
- Krisnandi, Y.K.; Eckelt, R.; Schneider, M.; Martin, A.; Richter, M. Glycerol Upgrading over Zeolites by Batch-Reactor Liquid-Phase Oligomerization: Heterogeneous versus Homogeneous Reaction. ChemSusChem 2008, 1, 835–844. [Google Scholar] [CrossRef]
- Richter, M.; Krisnandi, Y.K.; Eckelt, R.; Martin, A. Homogeneously catalyzed batch reactor glycerol etherification by CsHCO3. Catal. Commun. 2008, 9, 2112–2116. [Google Scholar] [CrossRef]
- Gholami, Z.; Abdullah, A.Z.; Lee, K.T. Heterogeneously catalyzed etherification of glycerol to diglycerol over calcium-lanthanum oxide supported on MCM-41: A heterogeneous basic catalyst. Appl. Catal. A Gen. 2014, 479, 76–86. [Google Scholar] [CrossRef]
- Barros, F.J.S.; Cecilla, J.A.; Moreno-Tost, R.; de Oliveira, M.F.; Rodriguez-Castellon, E.; Luna, F.M.T.; Vieira, R.S. Glycerol oligomerization using low cost dolomite catalyst. Waste Biomass Valoriz. 2020, 11, 1499–1512. [Google Scholar] [CrossRef]
- Padula, I.D.; Santos, B.M.A.; Rodrigues, A.P.H.; Gastelois, P.L.; Mendes, I.M.C.; Portilho, M.F.; Oliveira, L.C.A.; Oliveira, C.C. Niobium-modified hydrotalcite catalysts: Sustainable conversion of waste glycerol to valuable chemicals. Appl. Catal. A Gen. 2020, 606, 117814. [Google Scholar] [CrossRef]
- Melero, J.A.; Vicente, G.; Morales, G.; Paniagua, M.; Bustamante, J. Oxygenated compounds derived from glycerol for biodiesel formulation: Influence on EN 14214 quality parameters. Fuel 2010, 89, 2011–2018. [Google Scholar] [CrossRef]
- Gaudin, P.; Jacquot, R.; Marion, P.; Pouilloux, Y.; Jérôme, F. Acid-Catalyzed Etherification of Glycerol with Long-Alkyl-Chain Alcohols. ChemSusChem 2011, 4, 719–722. [Google Scholar] [CrossRef] [PubMed]
- Charles, G.; Clacens, J.; Pouilloux, Y.; Barrault, J. Préparation de diglycérol et triglycérol par polymérisation directe du glycérol en présence de catalyseurs solides. Oilseeds Fats Crop. Lipids 2003, 10, 74–82. [Google Scholar]
- Cottin, K.; Clacens, J.-M.; Pouilloux, Y.; Barrault, J. Preparation of diglycerol and triglycerol by the direct polymerization of glycerol in the presence of the new solid catalysts. Oléagineux Corps Gras Lipides 1998, 5, 407–412. [Google Scholar]
- Ruppert, A.M.; Meeldijk, J.D.; Kuipers, B.W.; Erné, B.H.; Weckhuysen, B.M. Glycerol etherification over highly active CaO-based materials: New mechanistic aspects and related colloidal particle formation. Chem. Eur. J. 2008, 14, 2016–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calatayud, M.; Ruppert, A.M.; Weckhuysen, B.M. Theoretical study on the role of surface basicity and Lewis acidity on the etherification of glycerol over alkaline earth metal oxides. Chem. Eur. J. 2009, 15, 10864–10870. [Google Scholar] [CrossRef]
Catalyst | Amount of Catalyst (mol%) | Reaction Time (h) | Conversion of Glycerol (%) | Selectivity (%) | Reference | ||
---|---|---|---|---|---|---|---|
DG | TG | Others | |||||
Na2CO3 1 | 1.74 | 8 | 96 | 24 | 35 | 41 | [38] |
NaHCO3 1 | 0.22 | 8 | 75 | 27 | 12 | 61 | [31] |
NaOH 2 | 4.60 | 8 | 63 | 60 | 32 | 7 | [39] |
NaOH 1 | 0.50 | 6 | 83.8 | 24.5 | 19.5 | 56 | [21] |
KOH 1 | 0.50 | 6 | 91.9 | 18.9 | 14.5 | 66.6 | [21] |
NaOAc 1 | 0.50 | 6 | 72.8 | 38.7 | 31.9 | 29.4 | [21] |
NaOAc 3 | 0.50 | 6 | 59.9 | 53.6 | 26.9 | 19.5 | This work |
NaOAc 4 | 0.50 | 2 | 77.0 | 41.5 | 28.1 | 30.4 | This work |
NaOAc 5 | 0.50 | 2 | 55.4 | 62.5 | 28.5 | 9.0 | This work |
KOAc 1 | 0.50 | 6 | 82.6 | 32.8 | 25.1 | 42.1 | [21] |
KOAc 3 | 0.50 | 6 | 69.6 | 31.5 | 23.5 | 45.0 | This work |
KOAc 4 | 0.50 | 2 | 88.5 | 24.3 | 21.7 | 54.0 | This work |
KOAc 6 | 0.50 | 2 | 62.8 | 52.3 | 28.7 | 19.0 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, T.; Lee, J.S. Positive Effect of Antagonistic Additives on the Homogeneous Catalytic Etherification Reaction of Glycerol. Catalysts 2021, 11, 1000. https://doi.org/10.3390/catal11081000
Han T, Lee JS. Positive Effect of Antagonistic Additives on the Homogeneous Catalytic Etherification Reaction of Glycerol. Catalysts. 2021; 11(8):1000. https://doi.org/10.3390/catal11081000
Chicago/Turabian StyleHan, Taeyoul, and Je Seung Lee. 2021. "Positive Effect of Antagonistic Additives on the Homogeneous Catalytic Etherification Reaction of Glycerol" Catalysts 11, no. 8: 1000. https://doi.org/10.3390/catal11081000
APA StyleHan, T., & Lee, J. S. (2021). Positive Effect of Antagonistic Additives on the Homogeneous Catalytic Etherification Reaction of Glycerol. Catalysts, 11(8), 1000. https://doi.org/10.3390/catal11081000