Photocatalytic Hydrogen Production from Urine Using Sr-Doped TiO2 Photocatalyst with Subsequent Phosphorus Recovery via Struvite Crystallization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations
2.1.1. Optical Properties and Energy Bandgaps of Sr-Doped TiO2
2.1.2. Crystalline Structure of Sr-Doped TiO2
2.1.3. Brunauer–Emmett–Teller (BET) Surface Areas of Sr-Doped TiO2
2.1.4. Morphology of Sr-Doped TiO2
2.2. Photocatalytic Hydrogen Production from Synthetic Urine
2.3. Struvite Crystallization from Urine
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation and Characterizations
3.3. Synthesis of Urine
3.4. Photocatalytic Hydrogen Production
3.5. Struvite Crystallization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Research Council. Use of Reclaimed Water and Sludge in Food Crop Production; The National Academies Press: Washington, DC, USA, 1996; p. 192. [Google Scholar]
- Boggs, B.K.; King, R.L.; Botte, G.G. Urea electrolysis: Direct hydrogen production from urine. Chem. Commun. 2009, 32, 4859–4861. [Google Scholar] [CrossRef]
- Corcoran, J.; Winter, M.J.; Tyler, C.R. Pharmaceuticals in the Aquatic Environment: A Critical Review of the Evidence for Health Effects in Fish. Crit. Rev. Toxicol. 2010, 40, 287–304. [Google Scholar] [CrossRef]
- Adetule, O.O.; Moreyibi, O.H.; Ogun, A.A.; Odeshi, T.A. Human Urine Utilization: A Waste Management Strategy. In Proceedings of the 2008 AIChE Annual Meeting, Philadelphia, PA, USA, 16–21 November 2008. [Google Scholar]
- Henze, M.; van Loosdrecht, M.C.; Ekama, G.A.; Brdjanovic, D. Biological Wastewater Treatment; IWA Publishing: London, UK, 2008. [Google Scholar]
- Yogeswari, M.K.; Dharmalingam, K.; Ronald Ross, P.; Mullai, P. Role of Iron Concentration on Hydrogen Production Using Confectionery Wastewater. J. Environ. Eng. 2016, 142, C4015017. [Google Scholar] [CrossRef]
- Winter, C.J. Into the hydrogen energy economy—Milestones. Int. J. Hydrogen Energy 2005, 30, 681–685. [Google Scholar] [CrossRef]
- Cargnello, M.; Gasparotto, A.; Gombac, V.; Montini, T.; Barreca, D.; Fornasiero, P. Photocatalytic H2 and Added-Value By-Products—The Role of Metal Oxide Systems in Their Synthesis from Oxygenates. Eur. J. Inorg. Chem. 2011, 28, 4309–4323. [Google Scholar] [CrossRef]
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 2005, 44, 8269. [Google Scholar] [CrossRef]
- Herrmann, J.M. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 1999, 53, 115–129. [Google Scholar] [CrossRef]
- Gupta, S.M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1639. [Google Scholar] [CrossRef] [Green Version]
- Payormhorm, J.; Chuangchote, S.; Laosiripojana, N. CTAB-assisted Sol-microwave Method for Fast Synthesis of Mesoporous TiO2 Photocatalysts for Photocatalytic Conversion of Glucose to Value-added Sugars. Mater. Res. Bull. 2017, 95, 546–555. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, W.; Chen, C.; Zhao, J.; Shuai, Z. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation. J. Am. Chem. Soc. 2004, 126, 4782–4783. [Google Scholar] [CrossRef]
- Sood, S.; Umar, A.; Mehta, S.K.; Sinha, A.S.K.; Kansal, S.K. Efficient photocatalytic degradation of brilliant green using Sr-doped TiO2 nanoparticles. Ceram. Int. 2015, 41, 3533–3540. [Google Scholar] [CrossRef]
- Naraginti, S.; Thejaswini, T.V.L.; Prabhakaran, D.; Sivakumar, A.; Satyanarayana, V.S.V.; Prasad, A.A. Enhanced photo-catalytic activity of Sr and Ag co-doped TiO2 nanoparticles for the degradation of Direct Green-6 and Reactive Blue-160 under UV & visible light. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 149, 571–579. [Google Scholar]
- Smit, A.L.; Bindraban, P.S.; Schröder, J.J.; Conijn, J.G.; Van der Meer, H.G. Phosphorus in Agriculture: Global Resources, Trends and Developments: Report to the Steering Committee Technology Assessment of the Ministery of Agriculture, Nature and Food Quality, The Netherlands, and in Collaboration with the Nutrient Flow Task Group (NFTG), Supported by DPRN (Development Policy Review Network); Plant Research International: Wageningen, The Netherlands, 2009. [Google Scholar]
- Daneshgar, S.; Callegari, A.; Capodaglio, A.G.; Vaccari, D. The Potential Phosphorus Crisis: Resource Conservation and Possible Escape Technologies: A Review. Resources 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Ngo, H.H.; Guo, W.; Liu, Y.; Li, J.; Liu, Y.; Zhang, X.; Jia, H. Insight into chemical phosphate recovery from municipal wastewater. Sci. Total. Environ. 2017, 576, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Wilsenach, J.A.; Schuurbiers, C.A.H.; Van Loosdrecht, M.C.M. Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Res. 2007, 41, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.D.; Parsons, S.A. Struvite formation, control and recovery. Water Res. 2002, 36, 3925–3940. [Google Scholar] [CrossRef]
- Karunanithi, R.; Szogi, A.; Bolan, N.S.; Naidu, R.; Ok, Y.S.; Krishnamurthy, S.; Seshadri, B. Chapter 27—Phosphorus Recovery From Wastes. In Environmental Materials and Waste; Prasad, M.N.V., Shih, K., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 687–705. [Google Scholar]
- Tauc, J. Optical Properties of Amorphous Semiconductors. In Amorphous and Liquid Semiconductors; Tauc, J., Ed.; Springer: Boston, MA, USA, 1974; pp. 159–220. [Google Scholar]
- Bakhshayesh, A.M.; Bakhshayesh, N. Enhanced short circuit current density of dye-sensitized solar cells aided by Sr,V co-doped TiO2 particles. Mater. Sci. Semicond. Process. 2016, 41, 92–101. [Google Scholar] [CrossRef]
- Li, Y.; Peng, S.; Jiang, F.; Lu, G.; Li, S. Effect of doping TiO2 with alkaline-earth metal ions on its photocatalytic activity. J. Serb. Chem. Soc. 2007, 72, 393–402. [Google Scholar] [CrossRef]
- Scherrer, P. Determination of the size and internal structure of colloidal particles using X-rays. Nachr. Ges. Wiss. Göttingen 1918, 2, 98–100. [Google Scholar]
- Mehnane, H.F.; Wang, C.; Kondamareddy, K.K.; Yu, W.; Sun, W.; Liu, H.; Bai, S.; Liu, W.; Guo, S.; Zhao, X. Hydrothermal synthesis of TiO2 nanoparticles doped with trace amounts of strontium, and their application as working electrodes for dye sensitized solar cells: Tunable electrical properties & enhanced photo-conversion performance. R. Soc. Chem. Adv. 2017, 7, 2358–2364. [Google Scholar]
- Kemacheevakul, P.; Chuangchote, S.; Otani, S.; Matsuda, T.; Shimizu, Y. Effect of magnesium dose on amount of pharmaceuticals in struvite recovered from urine. Water Sci. Technol. 2015, 72, 1102–1110. [Google Scholar] [CrossRef] [Green Version]
- Griffith, D.P.; Musher, D.M.; Itin, C. Urease. The primary cause of infection-induced urinary stones. Investig. Urol. 1976, 13, 346–350. [Google Scholar]
- Kemacheevakul, P.; Chuangchote, S.; Otani, S.; Matsuda, T.; Shimizu, Y. Phosphorus recovery: Minimization of amount of pharmaceuticals and improvement of purity in struvite recovered from hydrolysed urine. Environ. Technol. 2014, 35, 3011–3019. [Google Scholar] [CrossRef] [PubMed]
- Chuangchote, S.; Jitputti, J.; Sagawa, T.; Yoshikawa, S. Photocatalytic Activity for Hydrogen Evolution of Electrospun TiO2 Nanofibers. ACS Appl. Mater. Interfaces 2009, 1, 1140–1143. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.D.; Wang, C.C.; Lan, L.; Van Loosdrecht, M.C.M. Struvite formation, analytical methods and effects of pH and Ca2 +. Water Sci. Technol. 2008, 58, 1687–1692. [Google Scholar] [CrossRef]
- Buchanan, J.R.; Mote, C.R.; Robinson, R.B. Thermodynamics of Struvite Formation. Trans. Am. Soc. Assoc. Exec. 1994, 37, 617–621. [Google Scholar] [CrossRef]
Photocatalyst | Energy Bandgap (eV) | Anatase (101) 2θ (Degree) |
---|---|---|
TiO2 (P25) | 3.29 | 25.42 |
0.5% Sr/TiO2 | 3.11 | 25.50 |
1% Sr/TiO2 | 3.11 | 25.52 |
2% Sr/TiO2 | 3.11 | 25.47 |
4% Sr/TiO2 | 3.14 | 25.34 |
Catalyst | Elemental Composition of Sr (%) |
---|---|
0.5% Sr/TiO2 | 0.9 ± 0.2 |
1% Sr/TiO2 | 1.0 ± 0.1 |
2% Sr/TiO2 | 1.9 ± 0.2 |
4% Sr/TiO2 | 3.8 ± 0.0 |
Compound | Concentration | |
---|---|---|
g/L | mmol/L | |
CaCl2·2H2O | 0.65 | Ca: 4.3 |
MgCl2·6H2O | 0.651 | Mg: 3.2 |
NaCl | 4.6 | - |
Na2SO4 | 2.3 | SO4: 1.6 |
Na3 citrate·2H2O | 0.65 | Citrate: 2.3 |
Na2 oxalate | 0.020 | Oxalate: 0.149 |
KH2PO4 | 2.8 | PO4: 20.5 |
KCl | 1.6 | - |
NH4Cl | 1 | NH4: 19 |
HH2CONH2 (Urea) | 25 | - |
C4H7N3O (Creatinine) | 1.1 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sittipunsakda, O.; Kemacheevakul, P.; Laosiripojana, N.; Chuangchote, S. Photocatalytic Hydrogen Production from Urine Using Sr-Doped TiO2 Photocatalyst with Subsequent Phosphorus Recovery via Struvite Crystallization. Catalysts 2021, 11, 1012. https://doi.org/10.3390/catal11081012
Sittipunsakda O, Kemacheevakul P, Laosiripojana N, Chuangchote S. Photocatalytic Hydrogen Production from Urine Using Sr-Doped TiO2 Photocatalyst with Subsequent Phosphorus Recovery via Struvite Crystallization. Catalysts. 2021; 11(8):1012. https://doi.org/10.3390/catal11081012
Chicago/Turabian StyleSittipunsakda, Oranoot, Patiya Kemacheevakul, Navadol Laosiripojana, and Surawut Chuangchote. 2021. "Photocatalytic Hydrogen Production from Urine Using Sr-Doped TiO2 Photocatalyst with Subsequent Phosphorus Recovery via Struvite Crystallization" Catalysts 11, no. 8: 1012. https://doi.org/10.3390/catal11081012
APA StyleSittipunsakda, O., Kemacheevakul, P., Laosiripojana, N., & Chuangchote, S. (2021). Photocatalytic Hydrogen Production from Urine Using Sr-Doped TiO2 Photocatalyst with Subsequent Phosphorus Recovery via Struvite Crystallization. Catalysts, 11(8), 1012. https://doi.org/10.3390/catal11081012