Immobilization of Camel Liver Catalase on Nanosilver-Coated Cotton Fabric
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Camel Liver Catalase
3.2. Catalase Assay
3.3. Preparation of Silver Nanoparticles-Cotton Fabric
3.4. Procedure of Immobilization
3.5. Morphology Characterization
3.6. The Reuse of AgNp-CF-Catalase
3.7. Enzyme Characterization
3.8. Effect of Metal Ions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernandez, K.; Berenguer-Murcia, A.; Rodrigues, R.C.; Fernandez, L.R. Hydrogen peroxide in biocatalysis. A dangerous liaison. Curr. Org. Chem. 2012, 16, 2652–2672. [Google Scholar] [CrossRef]
- Shamsipur, M.; Asgari, M.; Maragheh, M.; Moosavi-Movahedi, A. A novel impedimetric nanobiosensor for low level determination of hydrogen peroxide based on biocatalysis of catalase. Bioelectrochemistry 2012, 83, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Plumere, N.; Henig, J.; Campbell, W.H. O2 removal system for electrochemical analysis under ambient air: Application in an amperometric nitrate biosensor. Anal. Chem. 2012, 84, 2141–2146. [Google Scholar] [CrossRef] [PubMed]
- Chelikani, P.; Fita, I.; Loewen, P.C. Diversity of structures and properties among catalases. Cell Mol. Life Sci. 2004, 61, 192–208. [Google Scholar] [CrossRef]
- Akertek, E.; Tarhan, L. Characterization of Immobilized Catalases and Their Application in Pasteurization of Milk with H2O2. Appl. Biochem. Biotechnol. 1995, 50, 291–303. [Google Scholar] [CrossRef]
- Abdel-Mageed, H.M.; El-Laithy, H.M.; Mahran, L.G.; Fahmy, A.S.; Mader, K.; Mohamed, S.A. Development of novel flexible sugar ester vesicles as carrier systems for the antioxidant enzyme catalase for wound healing applications. Proc. Biochem 2012, 47, 1155–1162. [Google Scholar] [CrossRef]
- Abdel-Mageed, H.M.; Fahmy, A.S.; Shaker, D.S.; Mohamed, S.A. Development of novel delivery system for nanoencapsulation of catalase: Formulation, characterization, and in vivo evaluation using oxidative skin injury model. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. S1), S362–S371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzaov, T.; Costa, S.; Guebitz, G.M.; Cavaco-Paulo, A. Dyeing in catalase-treated bleaching baths. Color. Technol. 2001, 117, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Soares, J.C.; Moreira, P.R.; Queiroga, A.C.; Morgado, J.; Malcata, F.X.; Pintado, M.E. Application of immobilized enzyme technologies for the textile industry: A review. Biocatal. Biotrans. 2011, 29, 223–237. [Google Scholar] [CrossRef]
- Kulshrestha, Y.; Husain, Q. Bioaffinity-based an inexpensive and high yield procedure for the immobilization of turnip (Brassica rapa) peroxidase. Biomol. Eng. 2006, 23, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Z.; Li, B.; Wang, Z.X.; Cheng, G.J.; Dong, S.J. Functionalized inorganic-organic composite material derivated by sol-gel for construction of mediated amperometric hydrogen peroxide biosensor. Anal. Chim. Acta 1999, 388, 71–78. [Google Scholar] [CrossRef]
- Chen, W.B.; Pardue, H.L. Pseudo-equilibrium approach to the design and use of enzyme-based amperometric biosensors evaluated using a sensor for hydrogen peroxide. Anal. Chim. Acta 2000, 409, 123–130. [Google Scholar] [CrossRef]
- Yabuki, S.; Mizutani, F.; Hirata, Y. Hydrogen peroxide determination based on a glassy carbon electrode covered with polyion complex membrane containing peroxidase and mediator. Sens. Actuators B 2000, 65, 49–51. [Google Scholar] [CrossRef]
- Liu, B.H.; Yan, F.; Kong, J.L.; Deng, J.Q. A reagentless amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene green in a modified zeolite matrix. Anal. Chim. Acta 1999, 386, 31–39. [Google Scholar] [CrossRef]
- Abdulaal, W.H.; Almulaiky, Y.Q.; El-Shishtawy, R.M. Encapsulation of HRP enzyme onto a magnetic Fe3O4 Np–PMMA film via casting with sustainable biocatalytic activity. Catalysts 2020, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Aldhahri, M.; Almulaiky, Y.Q.; El-Shishtawy, R.M.; Al-Shawafi, W.M.; Salah, N.; Alshahrie, A.; Alzahrani, H.A. Ultra-thin 2D CuO nanosheet for HRP immobilization supported by encapsulation in a polymer matrix: Characterization and dye degradation. Catal. Lett. 2021, 151, 232–246. [Google Scholar] [CrossRef]
- Sergereva, T.A.; Lavrik, N.V.; Rachkov, A.E.; Kazantseva, Z.I.; Piletsky, S.A.; El’skaya, A.V. Hydrogen peroxide-sensitive enzyme sensor based on phthalocyanine thin film. Anal. Chim. Acta 1999, 391, 289–297. [Google Scholar] [CrossRef]
- Fortier, G.; Brassard, E.; Belanger, D. Optimization of a polypyrrole glucose-oxidase biosensor. Biosens. Bioelectron. 1990, 5, 473–490. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Aly, A.S.; Mohamed, T.M.; Salah, H.A. Immobilization of horseradish peroxidase on non-woven polyester fabric coated with chitosan. Appl. Biochem. Biotechnol. 2008, 144, 169–179. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Al-Malki, A.L.; Kumosani, T.A.; El-Shishtawy, R.M. Horseradish peroxidase and chitosan: Activation, immobilization and comparative results. Int. J. Biol. Macromol. 2013, 60, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Alshawafi, W.M.; Aldhahri, M.; Almulaiky, Y.Q.; Salah, N.; Moselhy, S.S.; Ibrahim, I.H.; El-Shishtawy, R.M.; Mohamed, S.A. Immobilization of horseradish peroxidase on PMMA nanofibers incorporated with nanodiamond. Artif. Cells Nanomed. Biotechnol. 2018, 46, S973–S981. [Google Scholar] [CrossRef] [Green Version]
- Killard, A.J.; Zhang, S.; Zhao, H.; John, R.; Iwuoha, E.I.; Smyth, M.R. Development of an electrochemical flow injection immunoassay (FIIA) for the real-time monitoring of biospecific interactions. Anal. Chim. Acta 1999, 400, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Agostinelli, E.; Belli, F.; Tempera, G.; Murab, A.; Floris, G.; Toniolo, L.; Vavasori, A.; Fabris, S.; Momod, F.; Stevanato, R. Polyketone polymer: A new support for direct enzyme immobilization. J. Biotechnol. 2007, 127, 670–678. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Darwish, A.A.; El-Shishtawy, R.M. Immobilization of horseradish peroxidase on activated wool. Proc. Biochem. 2013, 48, 649–655. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Al-Harbi, M.H.; Almulaiky, Y.Q.; Ibrahim, I.H.; Salah, H.A.; El-Badry, M.O.; Abdel-Aty, A.M.; Fahmy, A.S.; El-Shishtawy, R.M. Immobilization of Trichoderma harzianum αamylase on PPyAgNp/Fe3O4-nanocomposite: Chemical and physical properties. Artif. Cells Nanomed. Biotechnol. 2018, 46, S201–S206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Naggar, M.E.; Abdel-Aty, A.M.; Wassel, A.R.; Elaraby, N.M.; Mohamed, S.A. Immobilization of horseradish peroxidase on cationic microporous starch: Physico-bio-chemical characterization and removal of phenolic compounds. Int. J. Biol. Macromol. 2021, 181, 734–742. [Google Scholar] [CrossRef] [PubMed]
- El-Shishtawy, R.M.; Ahmed, N.S.E.; Almulaiky, Y.Q. Immobilization of Catalase on Chitosan/ZnO and Chitosan/ZnO/Fe2O3 Nanocomposites: A Comparative Study. Catalysts 2021, 11, 820. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Al-Harbi, M.H.; Almulaiky, Y.Q.; Ibrahim, I.H.; El-Shishtawy, R.M. Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles. Electron. J. Biotechnol. 2017, 27, 84–90. [Google Scholar] [CrossRef]
- Almulaiky, Y.Q.; Khalil, N.M.; El-Shishtawy, R.M.; Bilal, M.; Mohammed, M.M. Hydroxyapatite-decorated ZrO2 for α-amylase immobilization: Toward the enhancement of enzyme stability and reusability. Int. J. Biol. Macromol. 2021, 167, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, S.; Çavaş, L.; Yurdakoç, K. Bentonite and sepiolite as supporting media: Immobilizationof catalase. Appl. Clay Sci. 2012, 65–66, 114–120. [Google Scholar] [CrossRef]
- Çetinus, S.A.; Şahin, E.; Saraydin, D. Preparation of Cu (II) adsorbed chitosan beads for catalase immobilization. Food Chem. 2009, 114, 962–969. [Google Scholar] [CrossRef]
- Song, N.; Chen, S.; Huang, X.; Liao, X.P.; Shi, B. Immobilization of catalase by using Zr (IV)-modified collagen fiber as the supporting matrix. Proc. Biochem. 2011, 46, 2187–2193. [Google Scholar] [CrossRef]
- Wang, P.; Qi, C.; Yu, Y.; Yuan, J.; Cui, L.; Tang, G.; Wang, Q.; Fan, X. Covalent Immobilization of Catalase onto Regenerated Silk Fibroins via Tyrosinase-Catalyzed Cross-Linking. Appl. Biochem. Biotechnol. 2015, 177, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, N.M.; Wong, J.R.; Tan, K.W.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S.; Ganesan, P. Immobilization of cellulase enzyme on functionalized multiwallcarbon nanotubes. J. Mol. Catal. B Enzym. 2014, 107, 124–131. [Google Scholar] [CrossRef]
- El-Shishtawy, R.M.; Asiri, A.M.; Al-Otaibi, M.M. Synthesis and spectroscopic studies of stable aqueous dispersion of silver nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 1505–1510. [Google Scholar] [CrossRef]
- El-Shishtawy, R.M.; Asiri, A.M.; Abdelwahed, N.A.M.; Al-Otaibi, M.M. In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 2011, 18, 75–82. [Google Scholar] [CrossRef]
- Arabaci, G.; Usluoglu, A. Catalytic properties and immobilization studies ofcatalase from Malva sylvestris L. J. Chem. 2013, 2013, 686185. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, U.; Kumar, A.; Sanwal, G.G. Goat liver catalase immobilized onvarious solid supports. J. Ferment. Bioeng. 1990, 70, 429–430. [Google Scholar] [CrossRef]
- Musthapa, S.M.; Akhtar, S.; Khan, A.A.; Husain, Q. An economical simple and high yield procedure for the immobilization/stabilization of peroxidases from turnip roots. J. Sci. Ind. Res. 2004, 63, 540–547. [Google Scholar]
- Qiu, H.J.; Xu, C.X.; Huang, X.R.; Ding, Y.; Qu, Y.B.; Gao, P.J. Immobilization of Laccase on Nanoporous Gold: Comparative Studies on the Immobilization Strategies and the Particle Size Effects. J. Phys. Chem. C 2009, 113, 2521–2525. [Google Scholar] [CrossRef]
- Cabral, J.M.S.; Kennedy, J.F. Thermostability of Enzymes; Gupta, M.N., Ed.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 163–179. [Google Scholar]
- Kallenberg, A.I.; van Rantwijk, F.; Sheldon, R.A. Immobilization of penicillin G acylase: The key to optimum performance. Adv. Synth. Catal. 2005, 347, 905–926. [Google Scholar] [CrossRef]
- Ozturk, N.; Tabak, A.; Akgol, S.; Denizli, A. Reversible immobilization ofcatalase by using a novel bentonite–cysteine (Bent–Cys) microcompositeaffinity sorbents. Colloids Surf. A 2008, 322, 148–154. [Google Scholar] [CrossRef]
- Wan, L.-S.; Ke, B.-B.; Wu, J.; Xu, Z.-K. Catalase immobilization on electrospunnanofibers: Effects of porphyrin pendants and carbon nanotubes. J. Phys. Chem. C 2007, 111, 14091–14097. [Google Scholar] [CrossRef]
- Yang, D.; Wang, X.; Shi, J.; Wang, X.; Zhang, S.; Han, P.; Jiang, Z. In situ synthesized rGO-Fe3O4 nanocomposites as enzyme immobilization support for achieving high activity recovery and easy recycling Biochem. Eng. J. 2016, 105, 273–280. [Google Scholar]
- Karim, Z.; Adnan, R.; Husain, Q. A β-cyclodextrin–chitosan complex as the immobilization matrix for horseradish peroxidase and its application for the removal of azo dyes from textile effluentInt. Int. Biodeterior. Biodegrad. 2012, 72, 10–17. [Google Scholar] [CrossRef]
- Qiu, H.; Lu, L.; Huang, X.; Zhang, Z.; Qu, Y. Immobilization of horseradish peroxidase on nanoporous copper and its potential applications. Bioresour. Technol. 2010, 101, 9415–9420. [Google Scholar] [CrossRef]
- Alptekin, O.; Tukel, S.S.; Yıldırım, D.; Dilek Alagoz, D. Immobilization of catalase onto Eupergit C and its characterization. J. Mol. Catal. B Enzym. 2010, 64, 177–183. [Google Scholar] [CrossRef]
- Corman, N.E.; Ozturk, N.; Tuzmen, N.; Akgol, S.; Denizli, A. Magnetic polymeric nanospheres as an immobilized metal affinity chromatography (IMAC) support for catalase. Biochem. Eng. J. 2010, 49, 159–164. [Google Scholar] [CrossRef]
- Al-Bar, O.A.M. Characterization of partially purified catalase from camel (Camelus dromedarius) liver. Afr. J. Biotechnol. 2013, 11, 9633–9640. [Google Scholar]
- Bergmeyer, H.U. Methods of Enzymatic Analysis, 2nd ed.; Bergmeyer, H.U., Ed.; Academic Press: New York, NY, USA, 1974; Volume 1, p. 438. [Google Scholar]
AgNp Loading Level (mL) | Immobilization Efficiency% | ||
---|---|---|---|
pH 5.0 | pH 7.0 | pH 8.0 | |
0 | 4 ± 0.12 | 4.6 ± 0.13 | 5.1 ± 0.11 |
1 | 8.6 ± 0.23 | 9.1 ± 0.3 | 10.5 ± 0.33 |
3 | 14.3 ± 0.32 | 15.5 ± 0.34 | 20 ± 0.48 |
6 | 53 ± 1.60 | 62 ± 1.80 | 76 ± 2.20 |
9 | 27 ± 0.42 | 28.7 ± 0.65 | 31 ± 0.81 |
Metal Ion | Relative Activity% | |
---|---|---|
Soluble Catalase | Immobilized Catalase | |
Control | 100 | 100 |
Cu2+ | 95 | 130 |
Co2+ | 79 | 95 |
Cd2+ | 65 | 85 |
Ni2+ | 45 | 62 |
Zn2+ | 27 | 46 |
Hg2+ | 15 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Bar, O.A.M.; El-Shishtawy, R.M.; Mohamed, S.A. Immobilization of Camel Liver Catalase on Nanosilver-Coated Cotton Fabric. Catalysts 2021, 11, 900. https://doi.org/10.3390/catal11080900
Al-Bar OAM, El-Shishtawy RM, Mohamed SA. Immobilization of Camel Liver Catalase on Nanosilver-Coated Cotton Fabric. Catalysts. 2021; 11(8):900. https://doi.org/10.3390/catal11080900
Chicago/Turabian StyleAl-Bar, Omar A. M., Reda M. El-Shishtawy, and Saleh A. Mohamed. 2021. "Immobilization of Camel Liver Catalase on Nanosilver-Coated Cotton Fabric" Catalysts 11, no. 8: 900. https://doi.org/10.3390/catal11080900
APA StyleAl-Bar, O. A. M., El-Shishtawy, R. M., & Mohamed, S. A. (2021). Immobilization of Camel Liver Catalase on Nanosilver-Coated Cotton Fabric. Catalysts, 11(8), 900. https://doi.org/10.3390/catal11080900