Ab Initio Studies of Bimetallic-Doped {0001} Hematite Surface for Enhanced Photoelectrochemical Water Splitting
Abstract
:1. Introduction
2. Results and Discussions
2.1. Energetic Stability of the Doped Systems
2.2. Charge Density Difference Plots
2.3. Electronic Band Structure and Density of States
3. Method
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nat. Cell Biol. 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Barroso, M.; Pendlebury, S.R.; Cowan, A.J.; Durrant, J.R. Charge Carrier Trapping, Recombination and Transfer in Hematite (A-Fe2O3) Water Splitting Photoanodes. Chem. Sci. 2013, 4, 2724–2734. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Leduc, J.; Haller, S.F. Photoelectrochemical and impedance characteristics of specular hematite. 1. Photoelectro-chemical parallel conductance, and trap rate studies. J. Phys. Chem. 1988, 92, 6655–6660. [Google Scholar] [CrossRef]
- Mirbagheri, N.; Wang, D.; Peng, C.; Wang, J.; Huang, Q.; Fan, C.; Ferapontova, E.E. Visible Light Driven Photoelectrochemical Water Oxidation by Zn-and Ti-Doped Hematite Nanostructures. Acs Catal. 2014, 4, 2006–2015. [Google Scholar] [CrossRef]
- Zhu, Q.; Yu, C.; Zhang, X. Ti, Zn co-doped hematite photoanode for solar driven photoelectrochemical water oxidation. J. Energy Chem. 2019, 35, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Feng, X.; Sloppy, J.D.; Guo, L.; Grimes, C.A. Vertically Aligned WO3 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis and Photoelectrochemical Properties. Nano Lett. 2011, 11, 203–208. [Google Scholar] [CrossRef]
- Jia, Q.; Iwashina, K.; Kudo, A. Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. Proc. Natl. Acad. Sci. USA 2012, 109, 11564–11569. [Google Scholar] [CrossRef] [Green Version]
- Sivula, K.; Le Formal, F.; Grätzel, M. Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ChemSusChem 2011, 4, 432–449. [Google Scholar] [CrossRef]
- Ling, Y.; Wang, G.; Wheeler, D.A.; Zhang, J.Z.; Li, Y. Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting. Nano Lett. 2011, 11, 2119–2125. [Google Scholar] [CrossRef]
- Bora, D.K.; Braun, A.; Constable, E.C. “In Rust We Trust”. Hematite–the Prospective Inorganic Backbone for Artificial Pho-tosynthesis. Energy Environ. Sci. 2013, 6, 407–425. [Google Scholar] [CrossRef]
- Liao, P.; Keith, J.A.; Carter, E.A. Water Oxidation on Pure and Doped Hematite (0001) Surfaces: Prediction of Co and Ni as Effective Dopants for Electrocatalysis. J. Am. Chem. Soc. 2012, 134, 13296–13309. [Google Scholar] [CrossRef] [PubMed]
- Podsiadły-Paszkowska, A.; Tranca, I.C.; Szyja, B.M. Tuning the Hematite (110) Surface Properties to Enhance Its Efficiency in Photoelectrochemistry. J. Phys. Chem. C 2019, 123, 5401–5410. [Google Scholar] [CrossRef]
- Simfukwe, J.; Mapasha, R.E.; Braun, A.; Diale, M. Exploring the Stability and Electronic Properties of Zn-Doped Hematite Surfaces for Photoelectrochemical Water Splitting. J. Phys. Chem. Solids 2019, 136, 109159. [Google Scholar] [CrossRef]
- Tamirat, A.G.; Rick, J.; Dubale, A.A.; Su, W.-N.; Hwang, B.-J. Using Hematite for Photoelectrochemical Water Splitting: A Re-view of Current Progress and Challenges. Nanoscale Horiz. 2016, 1, 243–267. [Google Scholar] [CrossRef]
- Le Formal, F.; Grätzel, M.; Sivula, K. Controlling Photoactivity in Ultrathin Hematite Films for Solar Water-Splitting. Adv. Funct. Mater. 2010, 20, 1099–1107. [Google Scholar] [CrossRef]
- Franking, R.; Li, L.; Lukowski, M.A.; Meng, F.; Tan, Y.; Hamers, R.J.; Jin, S. Facile Post-Growth Doping of Nanostructured Hem-atite Photoanodes for Enhanced Photoelectrochemical Water Oxidation. Energy Environ. Sci. 2013, 6, 500–512. [Google Scholar] [CrossRef]
- Gan, J.; Lu, X.; Tong, Y. Towards highly efficient photoanodes: Boosting sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale 2014, 6, 7142–7164. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Cai, J.; Meng, X.; Li, S.; Qin, G. 4d transition-metal doped hematite for enhancing photoelectrochemical activity: Theoretical prediction and experimental confirmation. RSC Adv. 2015, 5, 19353–19361. [Google Scholar] [CrossRef]
- Pan, H.; Qin, G.; Meng, X.; Liu, N.; Li, S. (Ti/Zr,N) codoped hematite for enhancing the photoelectrochemical activity of water splitting. Phys. Chem. Chem. Phys. 2015, 17, 22179–22186. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Meng, X.; Qin, G. Hydrogen Generation by Water Splitting on Hematite (0001) Surfaces: First-Principles Calculations. Phys. Chem. Chem. Phys. 2014, 16, 25442–25448. [Google Scholar] [CrossRef]
- Glasscock, J.A.; Barnes, P.; Plumb, I.C.; Savvides, N. Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si. J. Phys. Chem. C 2007, 111, 16477–16488. [Google Scholar] [CrossRef]
- Seriani, N. Ab Initio Simulations of Water Splitting on Hematite. J. Phys. Condens. Matter 2017, 29, 463002. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. Engineering Heterogeneous Semiconductors for Solar Water Splitting. J. Mater. Chem. A 2015, 3, 2485–2534. [Google Scholar] [CrossRef]
- Phuan, Y.W.; Ong, W.-J.; Chong, M.N.; Ocon, J.D. Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: A review. J. Photochem. Photobiol. C Photochem. Rev. 2017, 33, 54–82. [Google Scholar] [CrossRef]
- Bryan, D.; Gamelin, D.R. Doped Semiconductor Nanocrystals: Synthesis, Characterization, Physical Properties, and Applications. Prog. Inorg. Chem. 2005, 54, 47–126. [Google Scholar]
- Queisser, H.J.; Haller, E.E. Defects in Semiconductors: Some Fatal, Some Vital. Science 1998, 281, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; He, J.; Sun, Z.; Peng, Y.; Yao, T.; Liu, Q.; Jiang, Y.; Hu, F.; Xie, Z.; He, B.; et al. Ni-Doped Overlayer Hematite Nanotube: A Highly Photoactive Architecture for Utilization of Visible Light. J. Phys. Chem. C 2012, 116, 24060–24067. [Google Scholar] [CrossRef]
- Deng, J.; Zhong, J.; Pu, A.; Zhang, D.; Li, M.; Sun, X.; Lee, S.-T. Ti-Doped Hematite Nanostructures for Solar Water Splitting with High Efficiency. J. Appl. Phys. 2012, 112, 084312. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.-S.; Kleiman-Shwarsctein, A.; Forman, A.J.; Hazen, D.; Park, J.-N.; McFarland, E.W. Pt-Doped α-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting. Chem. Mater. 2008, 20, 3803–3805. [Google Scholar] [CrossRef]
- Wang, J.; Sun, H.; Huang, J.; Li, Q.; Yang, J. Band Structure Tuning of Tio2 for Enhanced Photoelectrochemical Water Splitting. J. Phys. Chem. C 2014, 118, 7451–7457. [Google Scholar] [CrossRef]
- Nagaveni, K.; Hegde, M.; Madras, G. Structure and Photocatalytic Activity of Ti1−XMXO2±Δ (M = W, V, Ce, Zr, Fe, and Cu) Synthesized by Solution Combustion Method. J. Phys. Chem. B 2004, 108, 20204–20212. [Google Scholar] [CrossRef]
- Chang, S.-M.; Liu, W.-S. Surface Doping Is More Beneficial Than Bulk Doping to the Photocatalytic Activity of Vanadium-Doped Tio2. Appl. Catal. B Environ. 2011, 101, 333–342. [Google Scholar] [CrossRef]
- Simfukwe, J.; Mapasha, R.E.; Braun, A.; Diale, M. Density Functional Theory Study of Cu Doped {0001} and {01-1 2} Surfaces of Hematite for Water Splitting. MRS Adv. 2018, 3, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Kayes, B.M.; Atwater, H.A.; Lewis, N.S. Comparison of the Device Physics Principles of Planar and Radial P-N Junction Nanorod Solar Cells. J. Appl. Phys. 2005, 97, 114302. [Google Scholar] [CrossRef]
- McDonald, K.J.; Choi, K.-S. Synthesis and Photoelectrochemical Properties of Fe2O3/ZnFe2O4Composite Photoanodes for Use in Solar Water Oxidation. Chem. Mater. 2011, 23, 4863–4869. [Google Scholar] [CrossRef]
- Miao, C.; Ji, S.; Xu, G.; Liu, G.; Zhang, L.; Ye, C. Micro-Nano-Structured Fe2o3: Ti/Znfe2o4 Heterojunction Films for Water Oxidation . ACS Appl. Mater. Interfaces 2012, 4, 4428–4433. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Gu, B.; Eres, G.; Zhang, Z. Ab initio study on noncompensated CrO codoping of GaN for enhanced solar energy conversion. J. Chem. Phys. 2010, 132, 104501. [Google Scholar] [CrossRef]
- Yin, W.-J.; Tang, H.; Wei, S.-H.; Al-Jassim, M.M.; Turner, J.; Yan, Y. Band Structure Engineering of Semiconductors for Enhanced Photoelectrochemical Water Splitting: The Case of TiO2. Phys. Rev. B 2010, 82, 045106. [Google Scholar] [CrossRef] [Green Version]
- Gai, Y.; Li, J.; Li, S.-S.; Xia, J.-B.; Wei, S.-H. Design of Narrow-Gap Tio 2: A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity. Phys. Rev. Lett. 2009, 102, 036402. [Google Scholar] [CrossRef] [PubMed]
- Kaouk, A.; Ruoko, T.-P.; Pyeon, M.; Gönüllü, Y.; Kaunisto, K.; Lemmetyinen, H.; Mathur, S. High Water-Splitting Efficiency through Intentional in and Sn Codoping in Hematite Photoanodes. J. Phys. Chem. C 2016, 120, 28345–28353. [Google Scholar] [CrossRef]
- Wang, J.; Du, C.; Peng, Q.; Yang, J.; Wen, Y.; Shan, B.; Chen, R. Enhanced photoelectrochemical water splitting performance of hematite nanorods by Co and Sn co-doping. Int. J. Hydrogen Energy 2017, 42, 29140–29149. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, W.; Li, Z.; Yu, T.; Zou, Z. Improved Photoelectrochemical Responses of Si and Ti Codoped A-Fe2O3 Photoanode Films. Appl. Phys. Lett. 2010, 97, 042105. [Google Scholar] [CrossRef]
- Zhu, W.; Qiu, X.; Iancu, V.; Chen, X.-Q.; Pan, H.; Wang, W.; Dimitrijevic, N.M.; Rajh, T.; Meyer, H.M., III; Paranthaman, M.P. Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity. Phys. Rev. Lett. 2009, 103, 226401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhuri, I.; Patra, N.; Mahata, A.; Ahuja, R.; Pathak, B. B–N@Graphene: Highly Sensitive and Selective Gas Sensor. J. Phys. Chem. C 2015, 119, 24827–24836. [Google Scholar] [CrossRef]
- Garg, P.; Kumar, S.; Choudhuri, I.; Mahata, A.; Pathak, B. Hexagonal Planar Cds Monolayer Sheet for Visible Light Photocatalysis. J. Phys. Chem. C 2016, 120, 7052–7060. [Google Scholar] [CrossRef]
- Mahata, A.; Rai, R.K.; Choudhuri, I.; Singh, S.K.; Pathak, B.; Vs, D. Indirect Pathway for Nitrobenzene Reduction Reaction on a Ni Catalyst Surface: A Density Functional Study. Phys. Chem. Chem. Phys. 2014, 16, 26365–26374. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Qi, X.; She, G.; Wang, M.; Mu, L.; Shi, W. Electrochemical Synthesis of P-Type Zn-Doped A-Fe2O3 Nanotube Arrays for Photoelectrochemical Water Splitting. Chem. Commun. 2013, 49, 5742–5744. [Google Scholar] [CrossRef] [PubMed]
- Ingler, W.B., Jr.; Khan, S.U. A Self-Driven P/N-Fe2O3 Tandem Photoelectrochemical Cell for Water Splitting, Electrochemical and Solid. State Lett. 2006, 9, G144. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, P.; Shrivastav, R.; Dass, S.; Satsangi, V.R. Electrodeposited Zirconium-Doped A-Fe2O3 Thin Film for Photoelectrochemical Water Splitting. Int. J. Hydrog. Energy 2011, 36, 2777–2784. [Google Scholar] [CrossRef]
- Shen, S.; Guo, P.; Wheeler, D.A.; Jiang, J.; Lindley, S.A.; Kronawitter, C.X.; Zhang, J.Z.; Guo, L.; Mao, S.S. Physical and Photoelectrochemical Properties of Zr-Doped Hematite Nanorod Arrays. Nanoscale 2013, 5, 9867–9874. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Density Functional Theory (Dft). Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef] [Green Version]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, V.I.; Solovyev, I.; Korotin, M.; Czyżyk, M.; Sawatzky, G. Density-Functional Theory and Nio Photoemission Spectra. Phys. Rev. B 1993, 48, 16929. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Zaanen, J.; Andersen, O.K. Band Theory and Mott Insulators: Hubbard U Instead of Stoner I. Phys. Rev. B 1991, 44, 943. [Google Scholar] [CrossRef] [Green Version]
- Himmetoglu, B.; Floris, A.; de Gironcoli, S.; Cococcioni, M. Hubbard-Corrected Dft Energy Functionals: The Lda+ U Description of Correlated Systems. Int. J. Quantum Chem. 2014, 114, 14–49. [Google Scholar] [CrossRef] [Green Version]
- Antonov, V.; Harmon, B.; Yaresko, A. Electronic Structure and Magneto-Optical Properties of Solids; Springer: Berlin, Germany, 2004. [Google Scholar]
- Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1963, 276, 238–257. [Google Scholar] [CrossRef]
- Hubbard, J. The approximate calculation of electronic band structure. Proc. Phys. Soc. 1967, 92, 921–937. [Google Scholar] [CrossRef]
- Dzade, N.Y.; Roldan, A.; De Leeuw, N.H. A Density Functional Theory Study of the Adsorption of Benzene on Hematite (α-Fe2O3) Surfaces. Minerals 2014, 4, 89–115. [Google Scholar] [CrossRef] [Green Version]
- Rohrbach, A.; Hafner, J.; Kresse, G. Ab Initio Study of the (0001) Surfaces of Hematite and Chromia: Influence of Strong Electronic Correlations. Phys. Rev. B 2004, 70, 125426. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Velev, J.; Butler, W.; Sarker, S.K.; Bengone, O. Effect of Electron Correlations on the Electronic and Magnetic Structure of Ti-Doped A-Hematite. Phys. Rev. B 2004, 69, 174429. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
Dopants | Formation Energy (eV) | |
---|---|---|
Fe-Rich | O-Rich | |
Ti | −3.59 | −5.10 |
(Zn, Ti) | 1.46 | −1.59 |
(Zn, 2Ti) | −0.39 | −4.93 |
Zr | −2.25 | −3.76 |
2Zr | −8.21 | −11.23 |
(Zn, Zr) | −4.34 | −7.37 |
(Zn, 2Zr) | −5.32 | −9.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simfukwe, J.; Mapasha, R.E.; Braun, A.; Diale, M. Ab Initio Studies of Bimetallic-Doped {0001} Hematite Surface for Enhanced Photoelectrochemical Water Splitting. Catalysts 2021, 11, 940. https://doi.org/10.3390/catal11080940
Simfukwe J, Mapasha RE, Braun A, Diale M. Ab Initio Studies of Bimetallic-Doped {0001} Hematite Surface for Enhanced Photoelectrochemical Water Splitting. Catalysts. 2021; 11(8):940. https://doi.org/10.3390/catal11080940
Chicago/Turabian StyleSimfukwe, Joseph, Refilwe Edwin Mapasha, Artur Braun, and Mmantsae Diale. 2021. "Ab Initio Studies of Bimetallic-Doped {0001} Hematite Surface for Enhanced Photoelectrochemical Water Splitting" Catalysts 11, no. 8: 940. https://doi.org/10.3390/catal11080940
APA StyleSimfukwe, J., Mapasha, R. E., Braun, A., & Diale, M. (2021). Ab Initio Studies of Bimetallic-Doped {0001} Hematite Surface for Enhanced Photoelectrochemical Water Splitting. Catalysts, 11(8), 940. https://doi.org/10.3390/catal11080940