Photocatalysis over N-Doped TiO2 Driven by Visible Light for Pb(II) Removal from Aqueous Media
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of TiO2–N Photocatalyst
2.1.1. By Diffuse Reflectance UV/Vis. (DRUV/Vis.) Method
2.1.2. By X-ray Diffraction (XRD) Method
2.1.3. By Fourier Transform Infra Red (FTIR) Method
2.1.4. By Scanning Electron Microscope (SEM)
2.2. Photocatalytic Activity TiO2–N under Visible Light in the Removal of Pb(II)
2.2.1. Influence of N Doping
2.2.2. Influence of Irradiation Time
2.2.3. Influence of Photocatalyst Weight on the Photo-Oxidation of Pb(II)
2.2.4. Influence of Solution pH
2.2.5. Detection of PbO2 Produced from the Photo-Oxidation
2.2.6. The Activity of the Doped-Photocatalyst with the Repetition Used
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Doping Process of N on TiO2
3.2.2. Characterization of N-Doped TiO2
3.2.3. Photo-Oxidation of Pb(II) in the Solution over TiO2–N Photocatalyst
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pandey, S.; Fosso-Kankeu, E.; Spiro, M.; Waanders, F.; Kumar, N.; Ray, S.; Kim, J.; Kang, M. Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite. Mater. Today Chem. 2020, 18, 100376. [Google Scholar] [CrossRef]
- Soliman, A.M.; Elwy, H.M.; Thiemann, T.; Majedi, Y.; Labata, F.T.; Al-Rawashdeh, N.A. Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated palm tree leaves. J. Taiwan Inst. Chem. Eng. 2016, 58, 264–273. [Google Scholar] [CrossRef]
- Asuquo, E.; Martin, A.; Nzerem, P.; Siperstein, F.; Fan, X. Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies. J. Environ. Chem. Eng. 2017, 5, 679–698. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, T.; Mohsen, M.A.; Mahmudian, H.R.; Torab-Mostaedi, M.; Moosavian, M.A.; Hassan Aghaya, H. Removal of Pb(II) by modified natural adsorbent; thermodynamics and kinetics studies. J. Water Environ. Nanotechnol. 2018, 3, 265–272. [Google Scholar]
- Pambudi, T.; Wahyuni, E.T.; Mudasir, M. Recoverable adsorbent of natural zeolite/Fe3O4 for removal of Pb(II) in water. J. Mater. Environ. Sci. 2020, 11, 69–78. [Google Scholar]
- Mahmoud, M.E.; Abdou, A.E.H.; Ahmed, S.B. Conversion of waste styrofoam into engineered adsorbents for efficient removal of cadmium, lead and mercury from water. ACS Sustain. Chem. Eng. 2016, 4, 819–827. [Google Scholar] [CrossRef]
- Wahyuni, E.T.; Siswanta, D.; Kunarti, E.S.; Supraba, D.; Budiraharjo, S. Removal of Pb(II) ions in the aqueous solution by photo-Fenton method. Glob. Nest J. 2019, 21, 180–186. [Google Scholar]
- Wahyuni, E.T.; Aprilita, N.H.; Hatimah, H.; Wulandari, A.; Mudasir, M. Removal of Toxic Metal Ions in Water by Photocatalytic Method. Am. Chem. Sci. J. 2015, 5, 194–201. [Google Scholar] [CrossRef]
- Ebraheim, G.; Karbassi, A.R.; Mehrdadi, N. Employing speciation of metals to assess photo-assisted electrochemical efficiency for improving rainwater quality in Tehran, Iran. Int. J. Environ. Sci. Technol. 2021, 1–20. [Google Scholar] [CrossRef]
- Pan, W.; Pan, C.; Bae, Y.; Giammar, D.E. Role of Manganese in Accelerating the Oxidation of Pb(II) Carbonate Solids to Pb(IV) Oxide at Drinking Water Conditions. Environ. Sci. Technol. 2019, 53, 6699–6707. [Google Scholar] [CrossRef] [PubMed]
- Mills, A.; O’Rourke, C.; Moore, K. Powder semiconductor photocatalysis in aqueous solution: An overview of kinetics-based reaction mechanisms. J. Photochem. Photobiol. A Chem. 2015, 310, 66–105. [Google Scholar] [CrossRef]
- Safari, G.; Hoseini, M.; Seyedsalehi, M.; Kamani, H.; Jaafari, J.; Mahvi, A.H. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. Int. J. Environ. Sci. Technol. 2014, 12, 603–616. [Google Scholar] [CrossRef] [Green Version]
- Gautam, A.; Kshirsagar, A.; Biswas, R.; Banerjee, S.; Khanna, P.K. Photodegradation of organic dyes based on anatase and rutile TiO2 nanoparticles. RSC Adv. 2016, 6, 2746–2759. [Google Scholar] [CrossRef]
- Jariyanorasade, A.; Junyapoon, S. Factors affecting the degradation of linear alkylbenzene sulfonate by TiO2 assisted photocatalysis and its kinetics. Environ. Asia 2018, 11, 45–60. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Hsueh, H.-T.; Chang, C.-W.; Chu, H. The visible light-driven photodegradation of dimethyl sulfide on S-doped TiO2: Characterization, kinetics, and reaction pathways. Appl. Catal. B Environ. 2016, 199, 1–10. [Google Scholar] [CrossRef]
- Li, H.; Hao, Y.; Lu, H.; Liang, L.; Wang, Y.; Qiu, J.; Shi, X.; Wang, Y.; Yao, J. A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol–gel method. Appl. Surf. Sci. 2015, 344, 112–118. [Google Scholar] [CrossRef]
- Kim, T.H.; Go, G.-M.; Cho, H.-B.; Song, Y.; Lee, C.-G.; Choa, Y.-H. A Novel Synthetic Method for N Doped TiO2 Nanoparticles Through Plasma-Assisted Electrolysis and Photocatalytic Activity in the Visible Region. Front. Chem. 2018, 6, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahy, J.G.; Cerfontaine, V.; Poelman, D.; Devred, F.; Gaigneaux, E.M.; Heinrichs, B.; Lambert, S.D. Highly Efficient Low-Temperature N-Doped TiO2 Catalysts for Visible Light Photocatalytic Applications. Materials 2018, 11, 584. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.T.; Bari, G.A.K.M.R.; Kang, H.-J.; Lee, T.-G.; Park, J.-W.; Hwang, H.J.; Hossain, S.M.; Mun, J.S.; Suzuki, N.; Fujishima, A.; et al. Synthesis of N-Doped TiO2 for Efficient Photocatalytic Degradation of Atmospheric NOx. Catalysts 2021, 11, 109. [Google Scholar] [CrossRef]
- Xu, T.; Wang, M.; Tong, W. Effects of N doping on the microstructures and optical properties of TiO2. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2019, 34, 55–63. [Google Scholar] [CrossRef]
- Gomes, J.; Lincho, J.; Domingues, E.; Quinta-Ferreira, R.M.; Martins, R.C. N–TiO2 photocatalysts: A Review of Their characteristics and capacity for emerging contaminants removal. Water 2019, 11, 373. [Google Scholar] [CrossRef] [Green Version]
- Hua, L.; Yin, Z.; Cao, S. Recent Advances in Synthesis and Applications of Carbon-Doped TiO2 Nanomaterials. Catalysts 2020, 10, 1431. [Google Scholar] [CrossRef]
- Razali, M.H.; Ahmad-Fauzi, M.N.; Mohamed, A.R.; Sreekantan, S. Morphological, Structural and Optical Properties Study of Transition Metal Ions Doped TiO2 Nanotubes Prepared by Hydrothermal Method. Int. J. Mater. Mech. Manuf. 2013, 1, 314–318. [Google Scholar] [CrossRef] [Green Version]
- Wahyuni, E.; Istiningsi, I.; Suratman, A. Use of Visible Light for Photo Degradation of Linear Alkyl-benzene Sulfonate in Laundry Wastewater over Ag-doped TiO2. J. Environ. Sci. Technol. 2020, 13, 124–130. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Feizi, A. Iron-doped TiO2 catalysts with photocatalytic activity. J. Water Environ. Nanotechnol. 2019, 4, 60–66. [Google Scholar] [CrossRef]
- Pedroza-Herrera, G.; Medina-Ramírez, I.E.; Lozano-Álvarez, J.A.; Rodil, S.E. Evaluation of the photocatalytic cctivity of copper doped TiO2 nanoparticles for the purification and/or disinfection of industrial effluents. Catal. Today 2020, 341, 37–48. [Google Scholar] [CrossRef]
- Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Cho, M.H. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J. Chem. 2016, 40, 3000–3009. [Google Scholar] [CrossRef]
- Manivannan, M.; Rajendran, S. Investigation of inhibitive action of urea—Zn2+ system in the corrosion control of carbon steel in sea water. Int. J. Eng. Sci. Tech. 2011, 3, 8048–8060. [Google Scholar]
Photocatalyst | Wavelength (nm) | Band Gap Energy (eV) |
---|---|---|
TiO2 | 387.5 | 3.20 |
TiO2–N(5) | 405.2 | 3.06 |
TiO2–N(10) | 411.9 | 3.01 |
TiO2–N(15) | 418.9 | 2.96 |
Element | The Content of the Element in TiO2–N(10) (% Mole) | |
---|---|---|
Before Photo-Oxidation | After Photo-Oxidation | |
Ti | 27.10 | 21.40 |
O | 47.40 | 52.30 |
N | 15.30 | 11.40 |
C | 10.20 | 7.60 |
Pb | - | 5.20 |
Na | - | 2.10 |
Repetition of TiO2–N(10) Use | Pb Resulted from the Photo-Oxidation over TiO2–N(10) (mg/g) | Pb(II) Photo-Oxidized (%) | Total Pb Resulted from the Photo-Oxidation Distributed over TiO2–N(10) Surface (mg/g) |
---|---|---|---|
1st | 24.53 | 98.12 | 24.53 |
2nd | 22.63 | 90.50 | 47.16 |
3th | 20.33 | 81.30 | 67.49 |
4th | 13.76 | 55.02 | 81.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahyuni, E.T.; Rahmaniati, T.; Hafidzah, A.R.; Suherman, S.; Suratman, A. Photocatalysis over N-Doped TiO2 Driven by Visible Light for Pb(II) Removal from Aqueous Media. Catalysts 2021, 11, 945. https://doi.org/10.3390/catal11080945
Wahyuni ET, Rahmaniati T, Hafidzah AR, Suherman S, Suratman A. Photocatalysis over N-Doped TiO2 Driven by Visible Light for Pb(II) Removal from Aqueous Media. Catalysts. 2021; 11(8):945. https://doi.org/10.3390/catal11080945
Chicago/Turabian StyleWahyuni, Endang Tri, Titi Rahmaniati, Aulia Rizky Hafidzah, Suherman Suherman, and Adhitasari Suratman. 2021. "Photocatalysis over N-Doped TiO2 Driven by Visible Light for Pb(II) Removal from Aqueous Media" Catalysts 11, no. 8: 945. https://doi.org/10.3390/catal11080945
APA StyleWahyuni, E. T., Rahmaniati, T., Hafidzah, A. R., Suherman, S., & Suratman, A. (2021). Photocatalysis over N-Doped TiO2 Driven by Visible Light for Pb(II) Removal from Aqueous Media. Catalysts, 11(8), 945. https://doi.org/10.3390/catal11080945