Hydrothermal Synthesis of CuO/RuO2/MWCNT Nanocomposites with Morphological Variants for High Efficient Supercapacitors
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Functionalization of MWCNTs
2.3. Preparation of CuO/RuO2/MWCNT Nanocomposites
2.4. Material Characterization Techniques
3. Results and Discussion
3.1. SEM Analysis
3.2. Thermo Gravimetric Analysis
3.3. Electrochemical Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saravanan, L.; Tseng, C.-M.; Chia-Chia, C.; Chung, Y.-C.; Chung, Y.-C.; Lin, C.-Y.; Lo, A.-Y. Pt–RuO–SnO/CMK-3 composite electrocatalysts for the methanol oxidation reaction. C. R. Chim. 2020, 23, 343–356. [Google Scholar] [CrossRef]
- Lo, A.-Y.; Taghipour, F. Review and prospects of microporous zeolite catalysts for CO2 photoreduction. Appl. Mater. Today 2021, 23, 101042. [Google Scholar] [CrossRef]
- Lo, A.-Y.; Chang, C.-C.; Lai, Y.-W.; Chen, P.-R.; Xu, B.-C. Improving the supercapacitor performance by dispersing SiO2 microspheres in electrodes. ACS Omega 2020, 5, 11522–11528. [Google Scholar] [CrossRef] [PubMed]
- Lo, A.-Y.; Saravanan, L.; Tseng, C.-M.; Wang, F.-K.; Huang, J.-T. Effect of composition ratios on the performance of Graphene/Carbon nanotube/Manganese oxide composites toward supercapacitor applications. ACS Omega 2020, 5, 578–587. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yuan, X.; Zhang, S.; Wang, J.; Huang, Q.; Yu, N.; Zhu, Y.; Fu, L.; Wang, F.; Chen, Y.; et al. Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 2019, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- Ricketts, B.W.; Ton-That, C. Self-discharge of carbon-based supercapacitors with organic electrolytes. J. Power Sour. 2000, 89, 64–69. [Google Scholar] [CrossRef]
- Burke, A. Ultracapacitor technologies and application in hybrid and electric vehicles. Int. J. Energy Res. 2010, 34, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Xie, X.; Pan, L.; Bao, Z.; Cui, Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2013, 2, 213–234. [Google Scholar] [CrossRef]
- Li, X.; Wei, B. Supercapacitors based on nanostructured carbon. Nano Energy 2013, 2, 159–173. [Google Scholar] [CrossRef]
- Dubal, D.P.; Kim, J.G.; Kim, Y.; Holze, R.; Lokhande, C.D.; Kim, W.B. Supercapacitors based on flexible substrates: An Overview. Energy Technol. 2014, 2, 325–341. [Google Scholar] [CrossRef]
- An, G.H. Metal ion capacitor composed of the thin-walled surfaces enabling high-rate performance and long cycling stability. Curr. Appl. Phys. 2020, 20, 605–610. [Google Scholar] [CrossRef]
- Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, H. Hydrous RuO2 nanoparticles coated on Co(OH)2 nanoflakes as advanced electrode material of supercapacitors. Appl. Surf. Sci. 2019, 470, 306–317. [Google Scholar] [CrossRef]
- Dinh, T.M.; Achour, A.; Vizireanu, S.; Dinescu, G.; Nistor, L.; Armstrong, K.; Guay, D.; Pech, D. Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy 2014, 10, 288–294. [Google Scholar] [CrossRef]
- Bi, R.-R.; Wu, X.-L.; Cao, F.-F.; Jiang, L.-Y.; Guo, Y.-G.; Wan, L.-J. Highly dispersed RuO2 nanoparticles on carbon nanotubes: Facile synthesis and enhanced supercapacitance performance. J. Phys. Chem. C 2010, 114, 2448–2451. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, S.-J. Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor. Carbon 2017, 122, 287–297. [Google Scholar] [CrossRef]
- Ye, J.-S.; Cui, H.F.; Liu, X.; Lim, T.M.; Zhang, W.-D.; Sheu, F.-S. Preparation and characterization of aligned carbon nanotube–ruthenium oxide nanocomposites for supercapacitors. Small 2005, 1, 560–565. [Google Scholar] [CrossRef]
- Chuang, C.-M.; Huang, C.-W.; Teng, H.; Ting, J.-M. Hydrothermally synthesized RuO2/Carbon nanofibers composites for use in high-rate supercapacitor electrodes. Compos. Sci. Technol. 2012, 72, 1524–1529. [Google Scholar] [CrossRef]
- Jiang, H.; Ma, J.; Li, C. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 2012, 24, 4197–4202. [Google Scholar] [CrossRef]
- Anandan, S.; Yang, S. Emergent methods to synthesize and characterize semiconductor CuO nanoparticles with various morphologies—An overview. J. Exp. Nanosci. 2007, 2, 23–56. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, J.; Guo, H.; Tong, X. Synthesis of CuO nanowire arrays as high-performance electrode for lithium ion batteries. Mater. Lett. 2015, 139, 55–58. [Google Scholar] [CrossRef]
- Ruan, J.-j.; Huo, Y.-q.; Hu, B. Three-dimensional Ni(OH)2/Cu2O/CuO porous cluster grown on nickel foam for high performance supercapacitor. Electrochim. Acta 2016, 215, 108–113. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Xiao, J.; Jiang, H.; Hu, T.; Meng, C. Copper oxide/cuprous oxide/hierarchical porous biomass-derived carbon hybrid composites for high-performance supercapacitor electrode. J. Alloys Compd. 2019, 782, 1103–1113. [Google Scholar] [CrossRef]
- Fisher, R.A.; Watt, M.R.; Jud Ready, W. Functionalized Carbon Nanotube Supercapacitor Electrodes: A Review on Pseudocapacitive Materials. ECS J. Solid State Sci. Technol. 2013, 2, M3170–M3177. [Google Scholar] [CrossRef]
- Cui, X.; Zhou, J.; Ye, Z.; Chen, H.; Li, L.; Ruan, M.; Shi, J. Selective catalytic oxidation of ammonia to nitrogen over mesoporous CuO/RuO2 synthesized by co-nanocasting-replication method. J. Catal. 2010, 270, 310–317. [Google Scholar] [CrossRef]
- Hosseini, M.G.; Shahryari, E. Synthesis, characterization and electrochemical study of graphene oxide-multi walled carbon nanotube-manganese oxide-polyaniline electrode as supercapacitor. J. Mater. Sci. Technol. 2016, 32, 763–773. [Google Scholar] [CrossRef]
- Manasrah, A.D.; Al-Mubaiyedh, U.A.; Laui, T.; Ben-Mansour, R.; Al-Marri, M.J.; Almanassra, I.W.; Abdala, A.; Atieh, M.A. Heat transfer enhancement of nanofluids using iron nanoparticles decorated carbon nanotubes. Appl. Therm. Eng. 2016, 107, 1008–1018. [Google Scholar] [CrossRef]
- Li, H.B.; Yu, M.H.; Wang, F.X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C.X.; Tong, Y.X.; Yang, G.W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1894. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.J.; Pineda, S.; Murdock, A.T.; Seo, D.H.; Ostrikov, K.; Bendavid, A. RuO2-coated vertical graphene hybrid electrodes for high-performance solid-state supercapacitors. J. Mater. Chem. A 2017, 5, 17293–17301. [Google Scholar] [CrossRef]
- Mohan, R.; Paulose, R. Influence of ferrites nanoparticles anchored on CNT hybrid nanocomposites for high-performance energy storage applications. J. Electron. Mater. 2018, 47, 6878–6885. [Google Scholar] [CrossRef]
- Su, Y.C.; Chen, C.A.; Chen, Y.M.; Huang, Y.S.; Lee, K.Y.; Tiong, K.K. Characterization of RuO2 nanocrystals deposited on carbon nanotubes by reactive sputtering. J. Alloys Compd. 2011, 509, 2011–2015. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, J.; Zhang, Y.; Zhao, Y.; Yin, H.; Hua, Q.; Yuan, J.; Tang, J. A ternary composite RuO2@SWCNT/graphene for high performance electrochemical capacitors. Mater. Lett. 2020, 259, 126860. [Google Scholar] [CrossRef]
- Kong, S.; Cheng, K.; Ouyang, T.; Gao, Y.; Ye, K.; Wang, G.; Cao, D. Facile electrodepositing processed of RuO2-graphene nanosheets-CNT composites as a binder-free electrode for electrochemical supercapacitors. Electrochim. Acta 2017, 246, 433–442. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, W.; Zhu, J.; Kharistal, D.J.; Zhao, W.; Lalia, B.S.; Hng, H.H.; Yan, Q. High-Power and High-Energy-Density Flexible Pseudocapacitor Electrodes Made from Porous CuO Nanobelts and Single-Walled Carbon Nanotubes. ACS Nano 2011, 5, 2013–2019. [Google Scholar] [CrossRef]
- Kavil, J.; Anjana, P.M.; Joshy, D.; Babu, A.; Raj, G.; Periyat, P.; Rakhi, R.B. g-C3N4/CuO and g-C3N4/Co3O4 nanohybrid structures as efficient electrode materials in symmetric supercapacitors. RSC Adv. 2019, 9, 38430–38437. [Google Scholar] [CrossRef] [Green Version]
- Paulose, R.; Raja, M. CuO nanoparticles/multi-walled carbon nanotubes (MWCNTs) nanocomposites for flexible supercapacitors. J. Nanosci. Nanotechnol. 2019, 19, 8151–8156. [Google Scholar] [CrossRef]
- Asim, S.; Javed, M.S.; Hussain, S.; Rana, M.; Iram, F.; Lv, D.; Hashim, M.; Saleem, M.; Khalid, M.; Jawaria, R.; et al. RuO2 nanorods decorated CNTs grown carbon cloth as a free standing electrode for supercapacitor and lithium ion batteries. Electrochim. Acta 2019, 326, 135009. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, X.; He, H.; Peng, Y.; Wu, Y. Engineering RuO2 on CuCo2O4/CuO nanoneedles as multifunctional electrodes for the hybrid supercapacitors and water oxidation catalysis. J. Alloys Compd. 2020, 832, 154962. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Yuan, X.; Shen, T.; Lin, L.; Zhang, M.; Meng, A.; Li, Q. Novel core-shell multi-dimensional hybrid nanoarchitectures consisting of Co(OH)2 nanoparticles/Ni3S2 nanosheets grown on SiC nanowire networks for high-performance asymmetric supercapacitors. Chem. Eng. Sci. 2019, 357, 21–32. [Google Scholar] [CrossRef]
Specimen Designation | Ru Content (%) * | Specific Capacitance (F/g) by CV Curves | Specific Capacitance (F/g) by GCD Curves | Rs (Ω) | Rct (Ω) |
---|---|---|---|---|---|
C35R11M | 11 | 228.38 | 144.06 | 2.193 | 1502 |
C35R16M | 16 | 257.67 | 259.44 | 2.747 | 59 |
C35R17M | 17 | 272.15 | 295.23 | 2.442 | 4 |
C35R20M | 20 | 359.89 | 326.92 | 2.271 | 5 |
C35R23M | 23 | 300.98 | 323.82 | 2.261 | 1 |
Specimen Designation | Cu Content (%) * | Specific Capacitance (F/g) by CV Curves | Specific Capacitance (F/g) by GCD Curves | Rs (Ω) | Rct (Ω) |
---|---|---|---|---|---|
C7R20M | 7 | 363.88 | 461.59 | 2.259 | 2 |
C8R20M | 8 | 343.70 | 437.15 | 2.426 | 3 |
C9R20M | 9 | 323.90 | 326.92 | 2.291 | 9 |
C10R20M | 10 | 301.91 | 305.63 | 2.260 | 251 |
C11R20M | 11 | 212.94 | 210.65 | 2.095 | 583 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, Y.-C.; Julistian, A.; Saravanan, L.; Chen, P.-R.; Xu, B.-C.; Xie, P.-J.; Lo, A.-Y. Hydrothermal Synthesis of CuO/RuO2/MWCNT Nanocomposites with Morphological Variants for High Efficient Supercapacitors. Catalysts 2022, 12, 23. https://doi.org/10.3390/catal12010023
Chung Y-C, Julistian A, Saravanan L, Chen P-R, Xu B-C, Xie P-J, Lo A-Y. Hydrothermal Synthesis of CuO/RuO2/MWCNT Nanocomposites with Morphological Variants for High Efficient Supercapacitors. Catalysts. 2022; 12(1):23. https://doi.org/10.3390/catal12010023
Chicago/Turabian StyleChung, Yi-Chen, Ade Julistian, Lakshmanan Saravanan, Peng-Ren Chen, Bai-Cheng Xu, Pei-Jie Xie, and An-Ya Lo. 2022. "Hydrothermal Synthesis of CuO/RuO2/MWCNT Nanocomposites with Morphological Variants for High Efficient Supercapacitors" Catalysts 12, no. 1: 23. https://doi.org/10.3390/catal12010023
APA StyleChung, Y. -C., Julistian, A., Saravanan, L., Chen, P. -R., Xu, B. -C., Xie, P. -J., & Lo, A. -Y. (2022). Hydrothermal Synthesis of CuO/RuO2/MWCNT Nanocomposites with Morphological Variants for High Efficient Supercapacitors. Catalysts, 12(1), 23. https://doi.org/10.3390/catal12010023