Synthesis of Atmospherically Stable Zero-Valent Iron Nanoparticles (nZVI) for the Efficient Catalytic Treatment of High-Strength Domestic Wastewater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization Results of nZVI
2.2. Effects of nZVI Particles on COD Solubilization
2.3. Effects of nZVI Particles on Solid Reduction
2.4. Effects of nZVI Particles on Phosphorous Removal
2.5. Statistical Analysis
2.5.1. Correlation Studies
2.5.2. Analysis of Variance (ANOVA) Test
3. Experimental Work
3.1. Material and Methods
3.2. Fabrication of nZVI
3.3. Characterization of nZVI
3.4. Batch Experiments
3.5. Analytical Methods
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Metcalf & Eddy Inc.; Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater engineering: Treatment and resource recovery. In McGraw-Hill Series in Civil and Environmental Engineering, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2014; ISBN 9781259010798. [Google Scholar]
- Jain, K.; Patel, A.S.; Pardhi, V.P.; Flora, S.J.S. Nanotechnology in wastewater management: A new paradigm towards wastewater treatment. Molecules 2021, 26, 1797. [Google Scholar] [CrossRef] [PubMed]
- Stefaniuk, M.; Oleszczuk, P.; Ok, Y.S. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chem. Eng. J. 2016, 287, 618–632. [Google Scholar] [CrossRef]
- Zhu, Y.; Costa, M. Metals and molecular carcinogenesis. Carcinogenesis 2020, 41, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.; Siddiqui, V.U.; Akram, M.K.; Siddiqi, W.A.; Sajid, S. Removal of Pb(II) from industrial wastewater using of CuO/Alg nanocomposite. In Lecture Notes in Civil Engineering; Springer Nature: Singapore, 2020; pp. 167–175. [Google Scholar]
- Pradeep, T.; Anshup; Bootharaju, M.S. Detection and extraction of pesticides from drinking water using nanotechnologies. In Nanotechnology Applications for Clean Water; Elsevier: Amsterdam, The Netherlands, 2014; pp. 241–270. ISBN 9781455731169. [Google Scholar]
- Kumari, P.; Alam, M.; Siddiqi, W.A. Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustain. Mater. Technol. 2019, 22, e00128. [Google Scholar] [CrossRef]
- Ariga, K.; Ishihara, S.; Abe, H.; Li, M.; Hill, J.P. Materials nanoarchitectonics for environmental remediation and sensing. J. Mater. Chem. 2012, 22, 2369–2377. [Google Scholar] [CrossRef]
- Gautam, S.K.; Sharma, D.; Tripathi, J.K.; Ahirwar, S.; Singh, S.K. A study of the effectiveness of sewage treatment plants in Delhi region. Appl. Water Sci. 2013, 3, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Paul, E.; Camacho, P.; Sperandio, M.; Ginestet, P. Technical and economical evaluation of a thermal, and two oxidative techniques for the reduction of excess sludge production. Process Saf. Environ. Prot. 2006, 84, 247–252. [Google Scholar] [CrossRef]
- Dadhore, H.; Kaur, C.; Shrivastava, S.; Choudhary, R. Synthesis and characterization of zero valent iron nanoparticles. Proc. Pollut. 2019, 6, 020021. [Google Scholar]
- Sandhya, S.; Sarayu, K.; Swaminathan, K. Determination of kinetic constants of hybrid textile wastewater treatment system. Bioresour. Technol. 2008, 99, 5793–5797. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, T.; Zhi, D.; Guo, B.; Zhou, Y.; Nie, J.; Huang, A.; Yang, Y.; Huang, H.; Luo, L. Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics: A review. J. Mater. Sci. 2019, 54, 12171–12188. [Google Scholar] [CrossRef]
- Abu Hasan, H.; Muhammad, M.H.; Ismail, N.I. A review of biological drinking water treatment technologies for contaminants removal from polluted water resources. J. Water Process Eng. 2020, 33, 101035. [Google Scholar] [CrossRef]
- Khunjan, U.; Kasikamphaiboon, P. Green synthesis of kaolin-supported nanoscale zero-valent iron using ruellia tuberosa leaf extract for effective decolorization of azo dye reactive black 5. Arab. J. Sci. Eng. 2021, 46, 383–394. [Google Scholar] [CrossRef]
- Raman, C.D.; Kanmani, S. Textile dye degradation using nano zero valent iron: A review. J. Environ. Manag. 2016, 177, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Zhou, X.; Zhou, J.; Liu, Y.; Li, Y.; Yang, K.; Lou, Z.; Baig, S.A.; Wu, D.; Xu, X. Design and characterization of sulfide-modified nanoscale zerovalent iron for cadmium(II) removal from aqueous solutions. Appl. Surf. Sci. 2018, 442, 114–123. [Google Scholar] [CrossRef]
- He, Z.; Mahmud, S.; Yang, Y.; Zhu, L.; Zhao, Y.; Zeng, Q.; Xiong, Z.; Zhao, S. Polyvinylidene fluoride membrane functionalized with zero valent iron for highly efficient degradation of organic contaminants. Sep. Purif. Technol. 2020, 250, 117266. [Google Scholar] [CrossRef]
- Oller, I.; Malato, S.; Sánchez-Pérez, J.A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review. Sci. Total Environ. 2011, 409, 4141–4166. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, H.N.; Iram, Z.; Iqbal, M.; Nisar, J.; Khan, M.I. Facile synthesis of zero valent iron and photocatalytic application for the degradation of dyes. Mater. Res. Express 2020, 7, 015802. [Google Scholar] [CrossRef]
- Adusei-Gyamfi, J.; Acha, V. Carriers for nano zerovalent iron (nZVI): Synthesis, application and efficiency. RSC Adv. 2016, 6, 91025–91044. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, J.; Song, K.; Zhou, X.; Wei, W.; Wang, D.; Xie, G.-J.; Gong, Y.; Zhou, B. Combined zero valent iron and hydrogen peroxide conditioning significantly enhances the dewaterability of anaerobic digestate. J. Environ. Sci. 2018, 67, 378–386. [Google Scholar] [CrossRef]
- Segura, Y.; Martínez, F.; Melero, J.A. Simple and efficient treatment of high-strength industrial waste water using commercial zero-valent iron. Chem. Pap. 2016, 70, 1059–1065. [Google Scholar] [CrossRef]
- O’Carroll, D.; Sleep, B.; Krol, M.; Boparai, H.; Kocur, C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour. 2013, 51, 104–122. [Google Scholar] [CrossRef]
- De, A.; De, A.K.; Panda, G.S.; Haldar, S. Synthesis of zero valent iron nanoparticle and its application as a dephenolization agent for coke oven plant wastewater situated in West Bengal: India. Environ. Prog. Sustain. Energy 2017, 36, 1700–1708. [Google Scholar] [CrossRef]
- Thangadurai, T.D.; Manjubaashini, N.; Thomas, S.; Maria, H.J. Advanced nanostructured materials for environmental remediation. In Environmental Chemistry for a Sustainable World; Naushad, M., Rajendran, S., Gracia, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 25, ISBN 978-3-030-04476-3. [Google Scholar]
- Al-Musawi, T.J.; Kamani, H.; Bazrafshan, E.; Panahi, A.H.; Silva, M.F.; Abi, G. Optimization the effects of physicochemical parameters on the degradation of cephalexin in sono-fenton reactor by using box-behnken response surface methodology. Catal. Lett. 2019, 149, 1186–1196. [Google Scholar] [CrossRef]
- Harada, T.; Yatagai, T.; Kawase, Y. Hydroxyl radical generation linked with iron dissolution and dissolved oxygen consumption in zero-valent iron wastewater treatment process. Chem. Eng. J. 2016, 303, 611–620. [Google Scholar] [CrossRef]
- Liu, S.; Feng, H.; Tang, L.; Dong, H.; Wang, J.; Yu, J.; Feng, C.; Liu, Y.; Luo, T.; Ni, T. Removal of Sb(III) by sulfidated nanoscale zerovalent iron: The mechanism and impact of environmental conditions. Sci. Total Environ. 2020, 736, 139629. [Google Scholar] [CrossRef]
- Liang, J.; Komarov, S.; Hayashi, N.; Kasai, E. Improvement in sonochemical degradation of 4-chlorophenol by combined use of Fenton-like reagents. Ultrason. Sonochem. 2007, 14, 201–207. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Yu, Q.; Xu, Z.; Quan, X. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron. Bioresour. Technol. 2014, 159, 297–304. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Li, Y.-Y.; Liu, Y.; Zhao, Y. Influence of zero valent scrap iron (ZVSI) supply on methane production from waste activated sludge. Chem. Eng. J. 2015, 263, 461–470. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Q.; Jiang, G.; Liu, P.; Yuan, Z. A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate. Bioresour. Technol. 2015, 185, 416–420. [Google Scholar] [CrossRef]
- Bagbi, Y. Nanoscale zero-valent iron for aqueous lead removal. Adv. Mater. Proc. 2017, 2, 235–241. [Google Scholar] [CrossRef]
- Sravanthi, K.; Ayodhya, D.; Yadgiri Swamy, P. Green synthesis, characterization of biomaterial-supported zero-valent iron nanoparticles for contaminated water treatment. J. Anal. Sci. Technol. 2018, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Naran, E.; Toor, U.A.; Kim, D.-J. Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production. Int. Biodeterior. Biodegrad. 2016, 113, 17–21. [Google Scholar] [CrossRef]
- Khoshnamvand, N.; Kord Mostafapour, F.; Mohammadi, A.; Faraji, M. Response surface methodology (RSM) modeling to improve removal of ciprofloxacin from aqueous solutions in photocatalytic process using copper oxide nanoparticles (CuO/UV). AMB Express 2018, 8, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seid-Mohammadi, A.; Ghorbanian, Z.; Asgari, G.; Dargahi, A. Photocatalytic degradation of metronidazole (MNZ) antibiotic in aqueous media using copper oxide nanoparticles activated by H2O2/UV process: Biodegradability and kinetic studies. Desalin. Water Treat. 2020, 193, 369–380. [Google Scholar] [CrossRef]
- Amen, T.W.M.; Eljamal, O.; Khalil, A.M.E.; Matsunaga, N. Wastewater degradation by iron/copper nanoparticles and the microorganism growth rate. J. Environ. Sci. 2018, 74, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Pillai, P.; Kakadiya, N.; Timaniya, Z.; Dharaskar, S.; Sillanpaa, M. Removal of arsenic using iron oxide amended with rice husk nanoparticles from aqueous solution. Mater. Today Proc. 2020, 28, 830–835. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Q.; Jiang, G.; Zhang, X.; Yuan, Z. Improving dewaterability of waste activated sludge by combined conditioning with zero-valent iron and hydrogen peroxide. Bioresour. Technol. 2014, 174, 103–107. [Google Scholar] [CrossRef]
- Martins, R.C.; Lopes, D.V.; Quina, M.J.; Quinta-Ferreira, R.M. Treatment improvement of urban landfill leachates by Fenton-like process using ZVI. Chem. Eng. J. 2012, 192, 219–225. [Google Scholar] [CrossRef]
- Şahinkaya, S.; Kalıpcı, E.; Aras, S. Disintegration of waste activated sludge by different applications of Fenton process. Process Saf. Environ. Prot. 2015, 93, 274–281. [Google Scholar] [CrossRef]
- Sheng, G.-P.; Yu, H.-Q.; Li, X.-Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 2010, 28, 882–894. [Google Scholar] [CrossRef]
- Segura, Y.; Martínez, F.; Melero, J.A.; Fierro, J.L.G. Zero valent iron (ZVI) mediated Fenton degradation of industrial wastewater: Treatment performance and characterization of final composites. Chem. Eng. J. 2015, 269, 298–305. [Google Scholar] [CrossRef]
- Kim, T.-H.; Lee, S.-R.; Nam, Y.-K.; Yang, J.; Park, C.; Lee, M. Disintegration of excess activated sludge by hydrogen peroxide oxidation. Desalination 2009, 246, 275–284. [Google Scholar] [CrossRef]
- Pham, T.T.H.; Brar, S.K.; Tyagi, R.D.; Surampalli, R.Y. Optimization of Fenton oxidation pre-treatment for B. thuringiensis—Based production of value added products from wastewater sludge. J. Environ. Manag. 2010, 91, 1657–1664. [Google Scholar] [CrossRef]
- Eljamal, R.; Eljamal, O.; Khalil, A.M.E.; Saha, B.B.; Matsunaga, N. Improvement of the chemical synthesis efficiency of nano-scale zero-valent iron particles. J. Environ. Chem. Eng. 2018, 6, 4727–4735. [Google Scholar] [CrossRef]
- Wu, B.; Wan, J.; Zhang, Y.; Pan, B.; Lo, I.M.C. Selective phosphate removal from water and wastewater using sorption: Process fundamentals and removal mechanisms. Environ. Sci. Technol. 2020, 54, 50–66. [Google Scholar] [CrossRef]
- Liu, A.; Liu, J.; Zhang, W. Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water. Chemosphere 2015, 119, 1068–1074. [Google Scholar] [CrossRef]
- Lv, X.; Hu, Y.; Tang, J.; Sheng, T.; Jiang, G.; Xu, X. Effects of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe3O4 nanocomposites. Chem. Eng. J. 2013, 218, 55–64. [Google Scholar] [CrossRef]
- Baird, R.; Rice, E.W.; Eaton, A.D.; Bridgewater, L.; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Alexandria, VA, USA, 2017; ISBN 9780875532875. [Google Scholar]
Aerobic Treatment | |||||
COD | TSS | VS | PO43− | TN | |
COD | 1 | ||||
TSS | 0.98 | 1 | |||
VS | 0.99 | 0.98 | 1 | ||
PO43− | −0.98 | 0.97 | 0.99 | 1 | |
TN | −0.97 | −0.94 | −0.95 | −0.99 | 1 |
Anaerobic Treatment | |||||
COD | TSS | VS | PO43− | TN | |
COD | 1 | ||||
TSS | 0.97 | 1 | |||
VS | −0.86 | 0.99 | 1 | ||
PO43− | 0.98 | −0.91 | −0.91 | 1 | |
TN | 0.96 | 0.98 | 0.99 | 0.98 | 1 |
Aerobic Treatment | ||||||
Source of Variation | COD | df | MS | F | p-Value | F Crit |
Rows | 1.09 × 109 | 5 | 2.18 × 108 | 21.04978 | 0.000003 | 2.901295 |
Columns | 5.86 × 108 | 3 | 1.95 × 108 | 18.91021 | 0.000023 | 3.287382 |
Error | 1.55 × 108 | 15 | 1.03 × 107 | |||
Total | 1.83 × 109 | 23 | ||||
Anaerobic Treatment | ||||||
Rows | 2.15 × 109 | 5 | 4.3 × 108 | 277.7312 | 4.17 × 10−6 | 5.050329 |
Columns | 7.50 × 105 | 1 | 7.50 × 105 | 0.483871 | 0.51 × 10−7 | 6.607891 |
Error | 7.75 × 106 | 5 | 1.55 × 106 | |||
Total | 2.16 × 109 | 11 |
Aerobic Treatment | ||||||
Source of Variation | TSS | df | MS | F | p-Value | F Crit |
Rows | 5.28 | 5 | 1.06 | 179.5706 | 7.9 × 10−8 | 2.901295 |
Columns | 2.46 × 10−2 | 3 | 8.22 × 10−3 | 1.396694 | 0.28 × 10−6 | 3.287382 |
Error | 8.82 × 10−2 | 15 | 5.88 × 10−3 | |||
Total | 5.39 | 23 | ||||
Anaerobic Treatment | ||||||
Rows | 5.16 × 10−1 | 5 | 1.03 × 10−1 | 43.4757 | 1.8 × 10−6 | 3.325835 |
Columns | 1.78 × 10−4 | 2 | 8.89 × 10−5 | 0.037452 | 0.96338 | 4.102821 |
Error | 2.37 × 10−2 | 10 | 2.37 × 10−3 | |||
Total | 5.40 × 10−1 | 17 |
Aerobic Treatment | ||||||
Source of Variation | PO43− | df | MS | F | p-Value | F Crit |
Rows | 1.98 | 5 | 3.95 × 10−1 | 247.5868 | 3.8 × 10−10 | 3.325835 |
Columns | 1.53 × 10−2 | 2 | 7.63 × 10−3 | 4.779241 | 0.03494 | 4.102821 |
Error | 8.82 × 10−2 | 10 | 1.60 × 10−3 | |||
Total | 1.60 × 10−2 | 27 | ||||
Anaerobic Treatment | ||||||
Rows | 8.59 × 10−3 | 8 | 1.07 × 10−3 | 278.6611 | 0 | 2.355081 |
Columns | 3.03 × 10−5 | 3 | 1.01 × 10−5 | 2.622596 | 0.073802 | 3.008787 |
Error | 9.24 × 10−5 | 24 | 3.85 × 10−6 | |||
Total | 8.71 × 10−3 | 35 |
Parameter | Value |
pH | 8.75 |
Colour | Blue Black |
Temperature | 22 °C |
Chemical oxygen demand (COD) | 680 mg/L |
Biological oxygen demand (BOD) | 163 mg/L |
Total suspended solids (TSS) | 332 mg/L |
Phosphorous (PO43−) | 13.86 mg/L |
Total Nitrogen (TN) | 53 mg/L |
Oil and Grease (O and G) | 12.4 |
NH4 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansari, A.; Siddiqui, V.U.; Akram, M.K.; Siddiqi, W.A.; Khan, A.; Al-Romaizan, A.N.; Hussein, M.A.; Puttegowda, M. Synthesis of Atmospherically Stable Zero-Valent Iron Nanoparticles (nZVI) for the Efficient Catalytic Treatment of High-Strength Domestic Wastewater. Catalysts 2022, 12, 26. https://doi.org/10.3390/catal12010026
Ansari A, Siddiqui VU, Akram MK, Siddiqi WA, Khan A, Al-Romaizan AN, Hussein MA, Puttegowda M. Synthesis of Atmospherically Stable Zero-Valent Iron Nanoparticles (nZVI) for the Efficient Catalytic Treatment of High-Strength Domestic Wastewater. Catalysts. 2022; 12(1):26. https://doi.org/10.3390/catal12010026
Chicago/Turabian StyleAnsari, Afzal, Vasi Uddin Siddiqui, Md. Khursheed Akram, Weqar Ahmad Siddiqi, Anish Khan, Abeer Nasser Al-Romaizan, Mahmoud A. Hussein, and Madhu Puttegowda. 2022. "Synthesis of Atmospherically Stable Zero-Valent Iron Nanoparticles (nZVI) for the Efficient Catalytic Treatment of High-Strength Domestic Wastewater" Catalysts 12, no. 1: 26. https://doi.org/10.3390/catal12010026
APA StyleAnsari, A., Siddiqui, V. U., Akram, M. K., Siddiqi, W. A., Khan, A., Al-Romaizan, A. N., Hussein, M. A., & Puttegowda, M. (2022). Synthesis of Atmospherically Stable Zero-Valent Iron Nanoparticles (nZVI) for the Efficient Catalytic Treatment of High-Strength Domestic Wastewater. Catalysts, 12(1), 26. https://doi.org/10.3390/catal12010026