A Review of Sulfate Radical-Based and Singlet Oxygen-Based Advanced Oxidation Technologies: Recent Advances and Prospects
Abstract
:1. Introduction
2. Characteristics of Persulfate and Peroxymonosulfate
3. Sulfate Radicals-Based Advanced Oxidation
3.1. Energy Activation
3.2. Transition Metal Ions Activation
3.3. Transition Metal Oxide Activation
3.4. Non-Metallic Materials Activation
4. Singlet Oxygen-Based Advanced Oxidation
4.1. Properties of Singlet Oxygen
4.2. Homogeneous Activation
4.3. Heterogeneous Activation
5. Conclusions and Prospect
Author Contributions
Funding
Conflicts of Interest
References
- Wang, J.; Tian, Z.; Huo, Y.B.; Yang, M.; Zheng, X.C.; Zhang, Y. Monitoring of 943 organic micropollutants in wastewater from municipal wastewater treatment plants with secondary and advanced treatment processes. J. Environ. Sci. 2018, 67, 309–317. [Google Scholar] [CrossRef]
- Tröger, R.; Klöckner, P.; Ahrens, L.; Wiberg, K. Micropollutants in drinking water from source to tap—Method development and application of a multiresidue screening method. Sci. Total Environ. 2018, 627, 1404–1432. [Google Scholar] [CrossRef]
- Oh, W.-D.; Dong, Z.; Lim, T.-T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B Environ. 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Xiao, G.; Xu, T.; Faheem, M.; Xi, Y.; Zhou, T.; Moryani, H.; Bao, J.; Du, J. Evolution of Singlet Oxygen by Activating Peroxydisulfate and Peroxymonosulfate: A Review. Int. J. Environ. Res. Public Health 2021, 18, 3344. [Google Scholar] [CrossRef]
- Hu, P.; Long, M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B Environ. 2016, 181, 103–117. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Barbati, S.; Doumenq, P.; Chiron, S. Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination. Chem. Eng. J. 2012, 197, 440–447. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Degradation of Organic Contaminants in Water with Sulfate Radicals Generated by the Conjunction of Peroxymonosulfate with Cobalt. Environ. Sci. Technol. 2003, 37, 4790–4797. [Google Scholar] [CrossRef]
- Duan, X.; Sun, H.; Shao, Z.; Wang, S. Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Appl. Catal. B Environ. 2018, 224, 973–982. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Singlet-Oxygen Generation in Alkaline Periodate Solution. Environ. Sci. Technol. 2015, 49, 14392–14400. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Zhao, Y.; Li, S.; Wei, X.; Meng, F.; Huang, W.; Lei, Z. Singlet oxygen dominated peroxymonosulfate activation by CuO-CeO2 for organic pollutants degradation: Performance and mechanism. Chemosphere 2019, 233, 549–558. [Google Scholar] [CrossRef]
- Mirza-Aghayan, M.; Tavana, M.M.; Boukherroub, R. Direct oxidative synthesis of nitrones from aldehydes and primary anilines using graphite oxide and Oxone. Tetrahedron Lett. 2014, 55, 5471–5474. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Tufano, T.P.; Dionysiou, D.D. Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate. Water Res. 2008, 42, 2899–2910. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- House, D.A. Kinetics and Mechanism of Oxidations by Peroxydisulfate. Chem. Rev. 1962, 62, 185–203. [Google Scholar] [CrossRef]
- Tang, L.; Ma, X.Y.; Wang, Y.; Zhang, S.; Zheng, K.; Wang, X.C.; Lin, Y. Removal of trace organic pollutants (pharmaceuticals and pesticides) and reduction of biological effects from secondary effluent by typical granular activated carbon. Sci. Total Environ. 2020, 749, 141611. [Google Scholar] [CrossRef]
- Bu, Z.; Hou, M.; Li, Z.; Dong, Z.; Zeng, L.; Zhang, P.; Wu, G.; Li, X.; Zhang, Y.; Pan, Y. Fe3+/Fe2+ cycle promoted peroxymonosulfate activation with addition of boron for sulfamethazine degradation: Efficiency and the role of boron. Sep. Purif. Technol. 2022, 298, 121596. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, L.; Wang, N.; Tang, H. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Appl. Catal. B Environ. 2012, 129, 153–162. [Google Scholar] [CrossRef]
- Guan, Y.-H.; Ma, J.; Li, X.-C.; Fang, J.-Y.; Chen, L.-W. Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System. Environ. Sci. Technol. 2011, 45, 9308–9314. [Google Scholar] [CrossRef]
- Acero, J.L.; Benítez, F.J.; Real, F.J.; Rodríguez, E. Degradation of selected emerging contaminants by UV-activated persulfate: Kinetics and influence of matrix constituents. Sep. Purif. Technol. 2018, 201, 41–50. [Google Scholar] [CrossRef]
- Dong, Z.-Y.; Xu, B.; Hu, C.-Y.; Zhang, T.-Y.; Tang, Y.-L.; Pan, Y.; El-Din, M.G.; Xian, Q.-M.; Gao, N.-Y. The application of UV-C laser in persulfate activation for micropollutant removal: Case study with iodinated X-ray contrast medias. Sci. Total Environ. 2021, 779, 146340. [Google Scholar] [CrossRef]
- Ghauch, A.; Tuqan, A.M.; Kibbi, N. Ibuprofen removal by heated persulfate in aqueous solution: A kinetics study. Chem. Eng. J. 2012, 197, 483–492. [Google Scholar] [CrossRef]
- Ren, T.-L.; Ma, X.-W.; Wu, X.-Q.; Yuan, L.; Lai, Y.-L.; Tong, Z.-H. Degradation of imidazolium ionic liquids in a thermally activated persulfate system. Chem. Eng. J. 2021, 412, 128624. [Google Scholar] [CrossRef]
- Li, B.; Li, L.; Lin, K.; Zhang, W.; Lu, S.; Luo, Q. Removal of 1,1,1-trichloroethane from aqueous solution by a sono-activated persulfate process. Ultrason. Sonochem. 2013, 20, 855–863. [Google Scholar] [CrossRef]
- Frontistis, Z.; Mantzavinos, D.; Meriç, S. Degradation of antibiotic ampicillin on boron-doped diamond anode using the combined electrochemical oxidation—Sodium persulfate process. J. Environ. Manag. 2018, 223, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, G.; Ghauch, A. Assessment of bimetallic and trimetallic iron-based systems for persulfate activation: Application to sulfamethoxazole degradation. Chem. Eng. J. 2014, 256, 280–292. [Google Scholar] [CrossRef]
- Wang, S.; Wu, J.; Lu, X.; Xu, W.; Gong, Q.; Ding, J.; Dan, B.; Xie, P. Removal of acetaminophen in the Fe2+/persulfate system: Kinetic model and degradation pathways. Chem. Eng. J. 2018, 358, 1091–1100. [Google Scholar] [CrossRef]
- Rastogi, A.; Al-Abed, S.R.; Dionysiou, D.D. Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl. Catal. B Environ. 2009, 85, 171–179. [Google Scholar] [CrossRef]
- Hafeez, M.A.; Hong, S.J.; Jeon, J.; Lee, J.; Singh, B.K.; Hyatt, N.C.; Walling, S.A.; Heo, J.; Um, W. Co2+/PMS based sulfate-radical treatment for effective mineralization of spent ion exchange resin. Chemosphere 2022, 287, 132351. [Google Scholar] [CrossRef]
- Nfodzo, P.; Choi, H. Triclosan decomposition by sulfate radicals: Effects of oxidant and metal doses. Chem. Eng. J. 2011, 174, 629–634. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical Generation by the Interaction of Transition Metals with Common Oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, H.; Liu, W.; Ao, Z.; Ji, H.; Liu, Y.; Su, S.; Yao, G.; Lai, B. Insights into heterogeneous catalytic activation of peroxymonosulfate by natural chalcopyrite: pH-dependent radical generation, degradation pathway and mechanism. Chem. Eng. J. 2020, 397, 125387. [Google Scholar] [CrossRef]
- Gao, Y.; Han, Y.; Liu, B.; Gou, J.; Feng, D.; Cheng, X. CoFe2O4 nanoparticles anchored on waste eggshell for catalytic oxidation of florfenicol via activating peroxymonosulfate. Chin. Chem. Lett. 2022, 33, 3713–3720. [Google Scholar] [CrossRef]
- Shen, Y.; de Vidales, M.J.M.; Gorni, G.; Gómez-Herrero, A.; Fernández-Martínez, F.; Dos Santos-García, A.J. Enhanced performance and recyclability for peroxymonosulfate activation via g-C3N4 supported CoFe layer double oxide. Chem. Eng. J. 2022, 444, 136610. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Qiao, X.; Wang, D.; Cai, X. Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound. Appl. Catal. B Environ. 2008, 80, 116–121. [Google Scholar] [CrossRef]
- Qi, F.; Chu, W.; Xu, B. Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate. Appl. Catal. B Environ. 2013, 134–135, 324–332. [Google Scholar] [CrossRef]
- Ouyang, M.; Li, X.; Xu, Q.; Tao, Z.; Yao, F.; Huang, X.; Wu, Y.; Wang, D.; Yang, Q.; Chen, Z.; et al. Heterogeneous activation of persulfate by Ag doped BiFeO3 composites for tetracycline degradation. J. Colloid Interface Sci. 2020, 566, 33–45. [Google Scholar] [CrossRef]
- Deng, J.; Ye, C.; Cai, A.; Huai, L.; Zhou, S.; Dong, F.; Li, X.; Ma, X. S-doping α-Fe2O3 induced efficient electron-hole separation for enhanced persulfate activation toward carbamazepine oxidation: Experimental and DFT study. Chem. Eng. J. 2021, 420, 129863. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Y.; Xiong, Z.; Ao, Z.; Pu, S.; Yao, G.; Lai, B. Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine. Appl. Catal. B Environ. 2020, 277, 119136. [Google Scholar] [CrossRef]
- Chen, X.-L.; Li, F.; Zhang, M.; Liu, B.; Chen, H.; Wang, H. Highly dispersed and stabilized Co3O4/C anchored on porous biochar for bisphenol A degradation by sulfate radical advanced oxidation process. Sci. Total Environ. 2021, 777, 145794. [Google Scholar] [CrossRef]
- Xu, R.; Li, M.; Zhang, Q. Collaborative optimization for the performance of ZnO/biochar composites on persulfate activation through plant enrichment-pyrolysis method. Chem. Eng. J. 2021, 429, 132294. [Google Scholar] [CrossRef]
- Ghorbanian, Z.; Asgari, G.; Samadi, M.T.; Seid-Mohammadi, A. Removal of 2,4 dichlorophenol using microwave assisted nanoscale zero-valent copper activated persulfate from aqueous solutions: Mineralization, kinetics, and degradation pathways. J. Mol. Liq. 2019, 296, 111873. [Google Scholar] [CrossRef]
- Zou, X.; Zhou, T.; Mao, J.; Wu, X. Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system. Chem. Eng. J. 2014, 257, 36–44. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, X.; Shi, C.; Yang, S. Decolorization of Acid Orange 7 with peroxymonosulfate oxidation catalyzed by granular activated carbon. Chem. Eng. J. 2013, 232, 259–265. [Google Scholar] [CrossRef]
- Pervez, N.; He, W.; Zarra, T.; Naddeo, V.; Zhao, Y. New Sustainable Approach for the Production of Fe3O4/Graphene Oxide-Activated Persulfate System for Dye Removal in Real Wastewater. Water 2020, 12, 733. [Google Scholar] [CrossRef]
- Hong, Y.; Luo, Z.; Zhang, N.; Qu, L.; Zheng, M.; Suara, M.A.; Chelme-Ayala, P.; Zhou, X.; El-Din, M.G. Decomplexation of Cu(II)-EDTA by synergistic activation of persulfate with alkali and CuO: Kinetics and activation mechanism. Sci. Total Environ. 2022, 817, 152793. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.-T.; Zhang, Y.; Teng, Y.; Fan, M. Sulfate Radical and Its Application in Decontamination Technologies. Crit. Rev. Environ. Sci. Technol. 2014, 45, 1756–1800. [Google Scholar] [CrossRef]
- Liang, C.; Bruell, C.J. Thermally Activated Persulfate Oxidation of Trichloroethylene: Experimental Investigation of Reaction Orders. Ind. Eng. Chem. Res. 2008, 47, 2912–2918. [Google Scholar] [CrossRef]
- Liang, C.J.; Bruell, C.J.; Marley, M.C.; Sperry, K.L. Thermally Activated Persulfate Oxidation of Trichloroethylene (TCE) and 1,1,1-Trichloroethane (TCA) in Aqueous Systems and Soil Slurries. Soil Sediment Contam. Int. J. 2003, 12, 207–228. [Google Scholar] [CrossRef]
- Yang, S.; Wang, P.; Yang, X.; Shan, L.; Zhang, W.; Shao, X.; Niu, R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater. 2010, 179, 552–558. [Google Scholar] [CrossRef]
- He, X.; de la Cruz, A.A.; Dionysiou, D.D. Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254nm activation of hydrogen peroxide, persulfate and peroxymonosulfate. J. Photochem. Photobiol. A Chem. 2013, 251, 160–166. [Google Scholar] [CrossRef]
- George, C.; Chovelon, J.-M. A laser flash photolysis study of the decay of SO4− and Cl2− radical anions in the presence of Cl− in aqueous solutions. Chemosphere 2002, 47, 385–393. [Google Scholar] [CrossRef]
- Chen, X.; Qiao, X.; Wang, D.; Lin, J.; Chen, J. Kinetics of oxidative decolorization and mineralization of Acid Orange 7 by dark and photoassisted Co2+-catalyzed peroxymonosulfate system. Chemosphere 2006, 67, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Barceloux, D.G. Cobalt. J. Toxicol. Clin. Toxicol. 1999, 37, 201–216. [Google Scholar] [CrossRef]
- Rodriguez, S.; Vasquez, L.; Costa, D.; Romero, A.; Santos, A. Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere 2014, 101, 86–92. [Google Scholar] [CrossRef]
- Li, C.-X.; Wang, Y.-J.; Chen, C.-B.; Fu, X.-Z.; Cui, S.; Lu, J.-Y.; Liu, H.-Q.; Li, W.-W. Interactions between chlorophenols and peroxymonosulfate: pH dependency and reaction pathways. Sci. Total Environ. 2019, 664, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Duan, X.; Sun, H.; Kang, J.; Wang, Y.; Indrawirawan, S.; Wang, S. Insights into Heterogeneous Catalysis of Persulfate Activation on Dimensional-Structured Nanocarbons. ACS Catal. 2015, 5, 4629–4636. [Google Scholar] [CrossRef]
- Jans, U.; Hoigné, J. Activated Carbon and Carbon Black Catalyzed Transformation of Aqueous Ozone into OH-Radicals. Ozone: Sci. Eng. 1998, 20, 67–90. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, J.; Gao, Y.; Pang, S.-Y.; Yang, Y.; Ma, J.; Gu, J.; Li, J.; Wang, Z.; Wang, L.-H.; et al. Activation of peroxymonosulfate by phenols: Important role of quinone intermediates and involvement of singlet oxygen. Water Res. 2017, 125, 209–218. [Google Scholar] [CrossRef]
- Schweitzer, C.; Schmidt, R. Physical Mechanisms of Generation and Deactivation of Singlet Oxygen. Chem. Rev. 2003, 103, 1685–1758. [Google Scholar] [CrossRef]
- Cheng, X.; Guo, H.; Zhang, Y.; Wu, X.; Liu, Y. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res. 2017, 113, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Krieger-Liszkay, A. Singlet oxygen production in photosynthesis. J. Exp. Bot. 2005, 56, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Hotze, E.M.; Badireddy, A.R.; Chellam, S.; Wiesner, M.R. Mechanisms of Bacteriophage Inactivation via Singlet Oxygen Generation in UV Illuminated Fullerol Suspensions. Environ. Sci. Technol. 2009, 43, 6639–6645. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhang, C.-J.; Xu, S.; Liu, B. A self-reporting AIE probe with a built-in singlet oxygen sensor for targeted photodynamic ablation of cancer cells. Chem. Sci. 2015, 7, 1862–1866. [Google Scholar] [CrossRef]
- Zhu, S.; Li, X.; Kang, J.; Duan, X.; Wang, S. Persulfate Activation on Crystallographic Manganese Oxides: Mechanism of Singlet Oxygen Evolution for Nonradical Selective Degradation of Aqueous Contaminants. Environ. Sci. Technol. 2018, 53, 307–315. [Google Scholar] [CrossRef]
- Rkanofsky, J. Assay for singlet-oxygen generation by peroxidases using 1270-nm chemiluminescence. Methods Enzymol. 2000, 319, 59–67. [Google Scholar]
- Qu, X.; Alvarez, P.J.J.; Li, Q. Photochemical Transformation of Carboxylated Multiwalled Carbon Nanotubes: Role of Reactive Oxygen Species. Environ. Sci. Technol. 2013, 47, 14080–14088. [Google Scholar] [CrossRef]
- Bartusik, D.; Aebisher, D.; Lyons, A.M.; Greer, A. Bacterial Inactivation by a Singlet Oxygen Bubbler: Identifying Factors Controlling the Toxicity of 1O2 Bubbles. Environ. Sci. Technol. 2012, 46, 12098–12104. [Google Scholar] [CrossRef]
- Romero, O.C.; Straub, A.P.; Kohn, T.; Nguyen, T.H. Role of Temperature and Suwannee River Natural Organic Matter on Inactivation Kinetics of Rotavirus and Bacteriophage MS2 by Solar Irradiation. Environ. Sci. Technol. 2011, 45, 10385–10393. [Google Scholar] [CrossRef]
- Mostafa, S.; Rosario-Ortiz, F.L. Singlet Oxygen Formation from Wastewater Organic Matter. Environ. Sci. Technol. 2013, 47, 8179–8186. [Google Scholar] [CrossRef]
- Guo, X.; Li, Q.; Zhang, M.; Long, M.; Kong, L.; Zhou, Q.; Shao, H.; Hu, W.; Wei, T. Enhanced photocatalytic performance of N-nitrosodimethylamine on TiO2 nanotube based on the role of singlet oxygen. Chemosphere 2015, 120, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ding, Y.; Tang, H. Generation of singlet oxygen over Bi(V)/Bi(III) composite and its use for oxidative degradation of organic pollutants. Chem. Eng. J. 2015, 264, 681–689. [Google Scholar] [CrossRef]
- Yu, K.; Yang, S.; Boyd, S.A.; Chen, H.; Sun, C. Efficient degradation of organic dyes by BiAgxOy. J. Hazard. Mater. 2011, 197, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.-J.; Liu, B.; Tian, L.-G.; Li, F.-T.; Ren, J.; Liu, S.-J.; Liu, Y.; Zhao, J.; Wang, X.-J. Synthesis of {111} Facet-Exposed MgO with Surface Oxygen Vacancies for Reactive Oxygen Species Generation in the Dark. ACS Appl. Mater. Interfaces 2017, 9, 12687–12693. [Google Scholar] [CrossRef]
- Stephenson, L.M.; McClure, D.E. Mechanisms in phosphite ozonide decomposition to phosphate esters and singlet oxygen. J. Am. Chem. Soc. 1973, 95, 3074–3076. [Google Scholar] [CrossRef]
- Foote, C.S.; Wexler, S.; Ando, W.; Higgins, R. Chemistry of singlet oxygen. IV. Oxygenations with hypochlorite-hydrogen peroxide. J. Am. Chem. Soc. 1968, 90, 975–981. [Google Scholar] [CrossRef]
- Du, J.; Xiao, G.; Xi, Y.; Zhu, X.; Su, F.; Kim, S.H. Periodate activation with manganese oxides for sulfanilamide degradation. Water Res. 2020, 169, 115278. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, J.; Gao, Y.; Ma, J.; Pang, S.-Y.; Li, J.; Lu, X.-T.; Yuan, L.-P. Activation of Peroxymonosulfate by Benzoquinone: A Novel Nonradical Oxidation Process. Environ. Sci. Technol. 2015, 49, 12941–12950. [Google Scholar] [CrossRef]
- Yang, F.; Huang, Y.; Fang, C.; Xue, Y.; Ai, L.; Liu, J.; Wang, Z. Peroxymonosulfate/base process in saline wastewater treatment: The fight between alkalinity and chloride ions. Chemosphere 2018, 199, 84–88. [Google Scholar] [CrossRef]
- Lou, X.; Fang, C.; Geng, Z.; Jin, Y.; Xiao, D.; Wang, Z.; Liu, J.; Guo, Y. Significantly enhanced base activation of peroxymonosulfate by polyphosphates: Kinetics and mechanism. Chemosphere 2017, 173, 529–534. [Google Scholar] [CrossRef]
- Peng, G.; You, W.; Zhou, W.; Zhou, G.; Qi, C.; Hu, Y. Activation of peroxymonosulfate by phosphite: Kinetics and mechanism for the removal of organic pollutants. Chemosphere 2020, 266, 129016. [Google Scholar] [CrossRef] [PubMed]
- Rao, L.; Yang, Y.; Chen, L.; Liu, X.; Chen, H.; Yao, Y.; Wang, W. Highly efficient removal of organic pollutants via a green catalytic oxidation system based on sodium metaborate and peroxymonosulfate. Chemosphere 2019, 238, 124687. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.; Zhang, W.; Yan, C.; Xu, W.; Wu, L.; Ye, Y.; Hu, Y.; Dong, W. Enhanced removal of organic contaminants in water by the combination of peroxymonosulfate and carbonate. Sci. Total Environ. 2018, 647, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Othman, I.; Zain, J.H.; Abu Haija, M.; Banat, F. Catalytic activation of peroxymonosulfate using CeVO4 for phenol degradation: An insight into the reaction pathway. Appl. Catal. B Environ. 2020, 266, 118601. [Google Scholar] [CrossRef]
- Chi, Y.; Wang, P.; Lin, M.; Lin, C.; Gao, M.; Zhao, C.; Wu, X. Manganese oxides activated peroxymonosulfate for ciprofloxacin removal: Effect of oxygen vacancies and chemical states. Chemosphere 2022, 299, 134437. [Google Scholar] [CrossRef]
- Jawad, A.; Zhan, K.; Wang, H.; Shahzad, A.; Zeng, Z.; Wang, J.; Zhou, X.; Ullah, H.; Chen, Z.; Chen, Z. Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide. Environ. Sci. Technol. 2020, 54, 2476–2488. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y.; Huang, W.; Xue, C.; Zhu, Y.; Wang, Q.; Liu, D. Innovatively employing magnetic CuO nanosheet to activate peroxymonosulfate for the treatment of high-salinity organic wastewater. J. Environ. Sci. 2020, 88, 46–58. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, G.; Liu, C.; Lan, H.; Liu, H.; Qu, J. Interface Stabilization of Undercoordinated Iron Centers on Manganese Oxides for Nature-Inspired Peroxide Activation. ACS Catal. 2018, 8, 1090–1096. [Google Scholar] [CrossRef]
- Yu, R.; Zhao, J.; Zhao, Z.; Cui, F. Copper substituted zinc ferrite with abundant oxygen vacancies for enhanced ciprofloxacin degradation via peroxymonosulfate activation. J. Hazard. Mater. 2019, 390, 121998. [Google Scholar] [CrossRef]
- Shao, P.; Tian, J.; Yang, F.; Duan, X.; Gao, S.; Shi, W.; Luo, X.; Cui, F.; Luo, S.; Wang, S. Identification and Regulation of Active Sites on Nanodiamonds: Establishing a Highly Efficient Catalytic System for Oxidation of Organic Contaminants. Adv. Funct. Mater. 2018, 28, 1705295. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, Z.; Zhu, Y.; Li, T.; Hu, C. New Insights into the Generation of Singlet Oxygen in the Metal-Free Peroxymonosulfate Activation Process: Important Role of Electron-Deficient Carbon Atoms. Environ. Sci. Technol. 2019, 54, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, T.; Zhu, Y.; Chen, Z.; Liang, J.; Zeng, Q.; Lyu, L.; Hu, C. Highly nitrogen-doped porous carbon transformed from graphitic carbon nitride for efficient metal-free catalysis. J. Hazard. Mater. 2019, 393, 121280. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wang, N.; Fan, Y.; Tong, T.; Han, X.; Du, Y. Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate. Chem. Eng. J. 2018, 336, 721–731. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Huang, W.; Wei, X.; Huang, W. Biochar supported CuO composites used as an efficient peroxymonosulfate activator for highly saline organic wastewater treatment. Sci. Total Environ. 2020, 721, 137764. [Google Scholar] [CrossRef]
- Liang, P.; Zhang, C.; Duan, X.; Sun, H.; Liu, S.; Tade, M.O.; Wang, S. An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: Formation mechanism and generation of singlet oxygen from peroxymonosulfate. Environ. Sci. Nano 2017, 4, 315–324. [Google Scholar] [CrossRef]
- Montgomery, R.E. Catalysis of peroxymonosulfate reactions by ketones. J. Am. Chem. Soc. 1974, 96, 7820–7821. [Google Scholar] [CrossRef]
- Lange, A.; Brauer, H.-D. On the formation of dioxiranes and of singlet oxygen by the ketone-catalysed decomposition of Caro’s acid. J. Chem. Soc. Perkin Trans. 2 1996, 5, 805–811. [Google Scholar] [CrossRef]
- Bu, Y.; Li, H.; Yu, W.; Pan, Y.; Li, L.; Wang, Y.; Pu, L.; Ding, J.; Gao, G.; Pan, B. Peroxydisulfate Activation and Singlet Oxygen Generation by Oxygen Vacancy for Degradation of Contaminants. Environ. Sci. Technol. 2021, 55, 2110–2120. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, H.; Zhang, Y.; Tang, W.; Cheng, X.; Li, W. Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: Singlet oxygen generation and degradation for aquatic levofloxacin. Chem. Eng. J. 2018, 343, 128–137. [Google Scholar] [CrossRef]
- Yang, S.; Wu, P.; Liu, J.; Chen, M.; Ahmed, Z.; Zhu, N. Efficient removal of bisphenol A by superoxide radical and singlet oxygen generated from peroxymonosulfate activated with Fe0-montmorillonite. Chem. Eng. J. 2018, 350, 484–495. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Li, W.; Zhong, R.; Lan, Y.; Guo, J. The efficient degradation of sulfisoxazole by singlet oxygen (1O2) derived from activated peroxymonosulfate (PMS) with Co3O4–SnO2/RSBC. Environ. Res. 2020, 187, 109665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q. Mechanism and Performance of Singlet Oxygen Dominated Peroxymonosulfate Activation on CoOOH Nanopar-ticles for 2,4-Dichlorophenol Degradation in Water. J. Hazard. Mater. 2020, 8. [Google Scholar]
- He, D.; Li, Y.; Lyu, C.; Song, L.; Feng, W.; Zhang, S. New insights into MnOOH/peroxymonosulfate system for catalytic oxidation of 2,4-dichlorophenol: Morphology dependence and mechanisms. Chemosphere 2020, 255, 126961. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Feng, H.; Tang, L.; Pang, Y.; Zeng, G.; Lu, Y.; Dong, H.; Wang, J.; Liu, Y.; Feng, C.; et al. Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Prog. Mater. Sci. 2020, 111, 100654. [Google Scholar] [CrossRef]
- Ren, W.; Xiong, L.; Nie, G.; Zhang, H.; Duan, X.; Wang, S. Insights into the Electron-Transfer Regime of Peroxydisulfate Activation on Carbon Nanotubes: The Role of Oxygen Functional Groups. Environ. Sci. Technol. 2019, 54, 1267–1275. [Google Scholar] [CrossRef]
- Duan, X.; Ao, Z.; Zhou, L.; Sun, H.; Wang, G.; Wang, S. Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Appl. Catal. B Environ. 2016, 188, 98–105. [Google Scholar] [CrossRef]
- Chen, X.; Oh, W.-D.; Lim, T.-T. Graphene- and CNTs-based carbocatalysts in persulfates activation: Material design and catalytic mechanisms. Chem. Eng. J. 2018, 354, 941–976. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, Y.; Lyu, L.; Zeng, Q.; Xing, X.; Hu, C. Electronic Structure Modulation of Graphitic Carbon Nitride by Oxygen Doping for Enhanced Catalytic Degradation of Organic Pollutants through Peroxymonosulfate Activation. Environ. Sci. Technol. 2018, 52, 14371–14380. [Google Scholar] [CrossRef]
- Huang, B.-C.; Jiang, J.; Huang, G.-X.; Yu, H.-Q. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate. J. Mater. Chem. A 2018, 6, 8978–8985. [Google Scholar] [CrossRef]
Properties | PS (Take Potassium Persulfate as an Example) | PMS (Take Potassium Peroxymonosulfate as an Example) |
---|---|---|
CAS Registry Number | 7727-21-1 | 10058-23-8 |
Chemical formula | K2S2O8 | KHSO5 |
Molecular mass | 270.309 | 614.738 |
Solubility in water (20 °C) | 520 g/L | >250 g/L |
Redox potential | 2.01 V | 1.82 V |
Reaction System | Pollutant | Conditions | Reactivity | Dominant ROS | Ref. |
---|---|---|---|---|---|
UV(254 nm)/PMS | benzoic acid (BA) | [BA] = 9.90 μM; [PMS] = 100 μM as 1/2 Oxone; pH = 11. | >90% with 10 min | SO4●− and ●OH | [18] |
UV(254 nm)/PS | Chlorophene | [Chlorophene] = 1 μM, [PS] = 50 μM, pH = 7, UV intensity (254 nm,15 W) = 4.23 mWcm−2. | 100% with 5 min | SO4●− | [19] |
UV-C laser/PS | Iohexol (IOX) | IUV = 25 mW/cm2, [PS] = 1.0 mM, [IOX] = 10 μM, initial pH = 7.0 ± 0.5, temperature 25 °C. | 93.8% within only 40 s | SO4●− | [20] |
Heat/PS | Ibuprofen (IBU) | [phosphate buffer] = 0.09 M, pH = 7.0, [IBU] = 20.36 μM, [PS] = 1.0 mM, T = 70 °C. | 100% with 20 min | SO4●− and ●OH | [21] |
Heat/PS | 1-alkyl-3-methylimidazolium bromides (C4mimBr) | [C4mimBr] = 0.1 mM, [PS] = 10 mM, T = 60 °C, pH = 7, V = 100 mL. | 100% with 120 min | SO4●− | [22] |
Ultrasound/PS | 1,1,1-trichloroethane (TCA) | [TCA] = 25.0 mg/L, [PS] = 250.0 mg/L pH 7.0, T = 20 ± 2 °C, ultrasound: 400 kHz, 100 W. | 100% with 120 min | SO4●− | [23] |
Electrolysis(boron-doped diamond anode)/PS | Ampicillin | [Ampicillin] = 1.1 mg/L, [PS] = 250 mg/L, current density (BDD anode) = 25 mAcm−2. | 100% with 120 min | SO4●− and ●OH | [24] |
Fe0/PS | sulfamethoxazole (SMX) | [SMX] = 39.5 μM, [PS] = 1.0 mM, [Fe0] = 2.23 mM; m (Fe0) = 2.5 mg, pH = 3.52. | 100% with 30 min | SO4●− | [25] |
Fe2+/PS | Acetaminophen (ACT) | [ACT] = 0.05 mM, [Fe2+] = 1 mM, [PS] = 0.8 mM, pH = 3, T = 20 °C. | 70% with 30 min | SO4●− | [26] |
Fe(II)/PMS | 2-chlorobiphenyl (2-CB) | [2-CB] = 0.0212 mM; [Fe(II)] = 0.11 mM; [PMS]0 = 0.11 mM. | 90% with 240 min | SO4●− | [27] |
Co2+/PMS | nuclear grade cationic IRN-77 resin | initial pH = 9, [Co2+] = 4 mM, [PMS] = 60 mM T = 60 °C. | ∼90% COD removal (1000 mg/L) with 60 min | SO4●− and ●OH | [28] |
Cu2+/PMS | Triclosan (TCS) | [TCS] = 9 mg/L (0.031 mM), initial pH = 7, molar ratio of oxidant to metal = 1:1, molar ratio of oxidant to triclosan = 5:1. | 95% with 10 min | SO4●− | [29] |
Ru3+/PMS | 2,4-dichlorophenol (2,4-DCP) | [2,4-DCP] = 0.311 mM, [RuCl3·xH2O] = 2.553 mM, [KHSO5] = 1.244 mM, pH = 7. | 98% in less than 1 min | SO4●− | [30] |
Natural chalcopyrite/PMS | Bisphenol S | Bisphenol S = 25 μM, chalcopyrite = 2 g/L, PMS = 0.4 mM, initial pH = 6.2, T = 303 K. | 83% with 30 min | SO4•− and •OH | [31] |
Eggshell-loaded CoFe2O4./PMS | Florfenicol (FF) | CoFe2O4/eggshell = 0.4 g/L, [PMS] = 0.96 mmol/L, [FF] = 10 mg/L, T = 30 °C, initial pH = 6.61. | 96.8% within 40 min | SO4•– and •OH | [32] |
CoFe layered double oxide/g-C3N4/PMS | paracetamol | [catalyst] = 0.2 g/L, [PMS] = 0.5 mM, [paracetamol] = 10 mg/L, temperature = 25 ± 0.5 °C, initial pH = 7 ± 0.2. | 100% in less than 10 min | SO4●− | [33] |
Co3O4/PMS | Acid Orange 7 | [AO7] = 0.2 mM, [PMS] = 2 mM and [nano-Co3O4] = 0.5 g/L, pH = 7. | 100% with 60 min | SO4●− | [34] |
Co-MCM41 | Caffeine (CAF) | [CAF] = 0.05 mM, [PMS] = 0.2 mM, [catalyst] = 200 mg/L, pH = 7.10. | 100% with 15 min | SO4•– and •OH | [35] |
Ag0.4-BiFeO3/PS | tetracycline (TC) | [catalysts] = 300 mg/L, [PS] = 5 mM, [TC] = 10 mg/L, pH = 4.5, T = 298 K. | 91% with 60 min | SO4●− and ●OH | [36] |
S-doped α-Fe2O3/PS | carbamazepine (CBZ) | [CBZ] = 2 mg/L, [PS]0 = 0.2 mM, [catalyst] = 0.2 g/L, T = 25 ± 1 °C and initial pH = 6.8 ± 0.5. | 93.13% with 30 min | SO4●− | [37] |
Fe3O4@Zn/Co-ZIFs/PMS | carbamazepine (CBZ) | [CBZ] = 5 mg/L, [catalyst] = 25 mg/L, [PMS] = 0.4 mM, initial pH = 6.8, T = 30 °C. | 100% with 30 min | SO4●− | [38] |
Co3O4/C-BC/PMS | Bisphenol A (BPA) | [catalyst] = 0.3 g/L, [pollutant] = 20 mg/L, [PMS] = 1.0 mmol/L, [pH] = 7.0, [T] = 30 °C. | 100% within less than 30 min | SO4●− | [39] |
ZnO/biochar/PS | tetracycline hydrochloride (TC) | [TC] = 0.05 g/L, [ZnO200/BC] = 0.1 g/L, [PS] = 1.0 mM, pH = 7.0 ± 0.1, T = 25 ± 2 °C. | 44.98% with 50 min | SO4●− and ●OH | [40] |
microwave irradiation(MW)/CuO/PS | 2,4-dichlorophenol (2,4-DCP) | [PS] = 0.4 g/L, [CuO] = 40 mg/L, (2,4-DCP) = 50 mg/L, initial pH = 9, MW power intensity = 180 W. | >98% with 90 min | SO4●− | [41] |
Ultrasound/Fe0/PS | Sulfadiazine (SD) | [SD] = 20 mg/L, [Fe0] = 0.92 Mm, [PS] = 1.84 mM, US input power = 90 W, initial pH = 7, room temperature. | 99.1% with 60 min | SO4●− | [42] |
granular activated carbon (GAC)/PMS | Acid Orange 7 (AO7) | [AO7] = 20 mg/L, [PMS]: [AO7] = 100:1, [GAC] = 1.0 g/L, without pH adjustment, T = 20 ± 0.5 °C. | 85% with 5 h | SO4●− | [43] |
Fe3O4@Graphene oxide (GO)/PS | Rhodamine B (RhB) | [RhB] = 20 ppm, [Fe3O4@GO] = 500 mg/L, [PS] = 1.5 mM, pH = 4.34, T = 20 °C. | 89% with 120 min | SO4●− | [44] |
alkali and CuO/PS | Cu-ethylenediamine tetraacetic acid (Cu(II)-EDTA) | [Cu(II)-EDTA] = 3.14 mM, [PS]/[Cu(II)-EDTA] = 15:1, [CuO] = 2 g/L, pH maintained at 11. | Nearly 100% with 120 min | SO4•−, •OH and O2•− | [45] |
Reaction System | Pollutant | Conditions | Reactivity | Dominant ROS | Ref. |
---|---|---|---|---|---|
Chlorophenols/PMS | 2, 4, 6-trichlorophenol (2, 4, 6-TCP) | [2, 4, 6-TCP] = 25 μM, [PMS] = 0.325 mM, T = 20 ± 2 °C, pH = 9. | 95% with 60 min | 1O2 | [55] |
benzoquinone (BQ)/PMS | sulfamethoxazole (SMX) | [PMS] = 0.44 mM, [SMX] = 8 μM, [BQ] = 10 μM, pH = 10, T = 25 °C. | 86% with 3 min | 1O2 | [78] |
PMS/base | Methylene blue (MB) | [PMS] = 1 mM, [MB] = 0.03 mM, [NaOH] = 2 mM, without pH adjustment | 100% with 120 min | 1O2 | [79] |
pyrophosphate (PA)/PMS | Acid Orange 7 (AO7) | [AO7] = 50 μΜ, [PA] = 0.1 M, [PMS] = 2.5 mM, pH 9.5. | Nearly 100% with 10 min | 1O2 | [80] |
Phosphite (HPO32−)/PMS | Acid Orange 7 (AO7) | [AO7] = 20 mg/L, [PMS] = 10.0 mM, [HPO32−] = 25.0 mM, pH = 7.06. | 82.1% within 60 min | 1O2 | [81] |
NaBO2/PMS | Acid Red 1 | [AR1] = 50 μM, [PMS] = 3 mM, [NaBO2] = 7.5 mM, initial pH = 7.0, T = 30 °C. | 97.8% within 10 min | 1O2 | [82] |
carbonate (CO32−)/PMS | Acid Orange 7 (AO7) | [AO7] = 0.05 mM, [CO32−] = 5 mM, [PMS] = 1 mM. | 100% within 40 min | O2− and 1O2 | [83] |
β-MnO2/PS | phenol | [β-MnO2] = 400 mg/L, [PS] = 4 mM, [phenol] = 100 μM, pH buffered around 6.5. | Over 99% with 180 min | 1O2 | [65] |
CeVO4/PMS | phenol | Phenol = 100 ppm, CeVO4 = 1.0 g/L, PMS = 2.0 g/L. | 100% with 80 min | 1O2 | [84] |
ε-MnO2/PMS | Ciprofloxacin (CIP) | [CIP] = 10 ppm, [catalyst] = 0.1 g/L, [PMS] = 1 mM, without pH adjustment. | 84.3% with 120 min | 1O2 | [85] |
CuOMgO/Fe3O4/PMPMS | 4-chlorophenol (4-CP) | [4-CP] = 40 ppm, [PMS] = 2 mM, [catalyst] = 0.2 g/L, T = 30 °C. | 100% within 40 min | 1O2 | [86] |
CuO-CeO2/PMS | Rhodamine B (RhB) | [PMS] = 1.6 mM, [catalyst] = 0.4 g/L, initial pH 7, [RhB] = 0.1 mM. | 100% within 60 min | 1O2 | [10] |
CuO-Fe3O4/PMS | Acid Orange 7 (AO7) | [Na2SO4] = 0.2 M, [PMS] = 2 mM, [catalyst] = 0.1 g/L, initial pH = 7, [AO7] = 0.2 mM. | 95.81% within 30 min | 1O2 | [87] |
Iron centers on manganese oxides (FeMn-350)/PMS | bisphenol A (BPA) | [BPA] = 80 mg/L, [catalyst] = 0.5 g/L, [Oxone] = 0.6 mM, pH = 7.5. | Nearly 100% within 25 min | 1O2 | [88] |
copper substituted zinc ferrite (ZCFO)/PMS | Ciprofloxacin (CIP) | [ZCFO] = 0.1 g/L, [PMS] = 2.5 mM, [CIP] = 10 mg/L and pH = 7.5. | 96.6% with 15 min | O2− and 1O2 | [89] |
carbon nanotubes (CNTs)/PS | 2,4-dichlorophenol (2,4-DCP) | [2,4-DCP] = 0.031 mM, PS/2,4-DCP molar ratio = 1/1, [CNTs] = 0.10 g/L, pH = 6.50 ± 0.05. | 95.9% within 30 min | 1O2 | [61] |
Nanodiamonds(AND/800)/PMS | 4-chlorophenol (4-CP) | [4-CP] = 0.16 mM, [PMS] = 0.25 mM, [AND/800] = 0.1 g/L, T = 20 ± 2 °C. | 81% with 30 min | 1O2 | [90] |
nitrogen-doped carbon nanosheets (NCN-900)/PMS | Bisphenol A (BPA) | [BPA] = 0.1 mM, [NCN-900] = 0.1 g/L, [PMS] = 2 mM, T = 30 °C, initial pH = 6.7. | 100% within 2 min | 1O2 | [91] |
N-doped porous carbon (NC1.0)/PMS | Bisphenol A (BPA) | [BPA] = 0.1 mM, [(NC1.0] = 0.2 g/L, [PMS] = 2 mM, T =30 °C, initial pH = 6.7. | 100% within 15 min | 1O2 | [92] |
nitrogen-doped carbon nanotubes frameworks (NCNTFs)/PMS | Bisphenol A (BPA) | [BPA] = 25 mg/L, [NCNTFs-800] = 0.05 g/L, [Oxone] = 0.40 g/L, temperature = 20 °C. | 97.3% with 30 min | 1O2 | [93] |
CuO-Biochar/PMS | Atrazine (ATZ)] | [Na2SO4] = 200 mM, [PMS] = 2 mM, [catalyst] = 0.2 g/L, [ATZ] = 0.1 mM, initial pH = 7. | 100% within 30 min | 1O2 | [94] |
N-doped graphene/PMS | phenol | [catalyst] = 100 mg/L, [PMS] = 3.25 mM, [phenol] = 50 ppm, T = 25 °C. | 100% within 30 min | 1O2 | [95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Sun, Y.; Liu, D.; Yi, M.; Chang, F.; Li, H.; Du, Y. A Review of Sulfate Radical-Based and Singlet Oxygen-Based Advanced Oxidation Technologies: Recent Advances and Prospects. Catalysts 2022, 12, 1092. https://doi.org/10.3390/catal12101092
Li Z, Sun Y, Liu D, Yi M, Chang F, Li H, Du Y. A Review of Sulfate Radical-Based and Singlet Oxygen-Based Advanced Oxidation Technologies: Recent Advances and Prospects. Catalysts. 2022; 12(10):1092. https://doi.org/10.3390/catal12101092
Chicago/Turabian StyleLi, Zhendong, Yanmei Sun, Dongfang Liu, Malan Yi, Fang Chang, Huiting Li, and Yunyi Du. 2022. "A Review of Sulfate Radical-Based and Singlet Oxygen-Based Advanced Oxidation Technologies: Recent Advances and Prospects" Catalysts 12, no. 10: 1092. https://doi.org/10.3390/catal12101092
APA StyleLi, Z., Sun, Y., Liu, D., Yi, M., Chang, F., Li, H., & Du, Y. (2022). A Review of Sulfate Radical-Based and Singlet Oxygen-Based Advanced Oxidation Technologies: Recent Advances and Prospects. Catalysts, 12(10), 1092. https://doi.org/10.3390/catal12101092