The Recent Advances in Bulk and Microfluidic-Based pH Sensing and Its Applications
Abstract
:1. Introduction
1.1. Background
1.2. Definition and History of pH
1.3. Applications
1.3.1. Environmental Determination
1.3.2. Pharmacy
1.3.3. Medical Science
1.3.4. Biological Analysis
1.3.5. Chemical Analysis
2. The Overview of Mechanism of pH Sensing
2.1. Specific pH Measurement
2.1.1. Cell for a Primary Method Measuring pH
2.1.2. The Differential pH Cell (Baucke Cell)
2.1.3. Ordinary pH Measurements: The Glass Electrode
3. The Overview of pH Sensors
3.1. Hydrogen Electrode
3.2. The Glass Electrode
Form | Representative Composition | Evaluation | Shortcoming | Reference |
---|---|---|---|---|
Sodium silicate pH glass electrode | 22Na2O–6CaO–72SiO2 | Combing with the vacuum tube amplifiers successfully in the industry since the 1930s | Deviations were observed in more acid or base solutions | [60,61] |
Lithium silicate pH glass electrode | 18.1Li2O–9.6CaO–72.3SiO2 | Higher pH limit in Li+ or Na+ containing solutions | Due to the high electrical resistance, this technique is failed to confirm its characteristics by other scientists. | [62,63] |
26Li2O–3.6BaO–70.4SiO2 and 26.5Li2O–12.3MgO–61.2SiO2 | Only using low electrical resistance to fabricate the glass electrode | / | [63] | |
Li2O-Cs2O-La2O3-SiO2 | The most successful improvement of lithium silicate glasses for glass electrode and have been widely employed since the 1950s | / | [64] |
3.3. Quinone Hydroquinone pH Electrode
3.4. Optical Fiber pH Sensor
3.5. Ion Sensitive Field Effect Transistor (ISFET) pH Sensor
3.6. Metal/Metal Oxide pH Sensor
4. The Microfluidic-Based pH Sensing
4.1. The Fabrication of Microfluidic-Based Sensing
4.2. Microfluidic-Based Sensing Applications
4.2.1. Biology
4.2.2. Environmental Detection
4.2.3. Food Safety
4.2.4. Medical Engineering
5. Future Trend of pH Sensing and Microfluidic-Based pH Sensing
5.1. Miniaturization
5.2. Intellectualization
5.3. Sustainability
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Meinrath, G.; Spitzer, P. Uncertainties in Determination of pH. Microchim. Acta 2000, 135, 155–168. [Google Scholar] [CrossRef]
- Michaelis, L. Die Wasserstoffionenkonzentration. Naturwissenschaften 1914, 2, 829–834. [Google Scholar] [CrossRef]
- Brown, R.J.C.; Milton, M.J.T. Developments in accurate and traceable chemical measurements. Chem. Soc. Rev. 2007, 36, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, P.; Pratt, K.W. The history and development of a rigorous metrological basis for pH measurements. J. Solid State Electrochem. Curr. Res. Dev. Sci. Technol. 2011, 15, 69–76. [Google Scholar] [CrossRef]
- Hagerup. Études Enzymatiques: 2: Sur la Mesure et L’importance de la Concentration des Ions Hydrogène Dans les Réactions Enzymatiques, 2nd ed.; H.Hagerup: Kjøbenhavn, Denmark, 1925. [Google Scholar]
- Sfrensen, S.P.L. Enzymstudien. II. Mitteilung. Über die Messung und Die Bedeutung der Wasserstoffionen-Koncentration Bei Enzymatischen Prozessen; Biochem. Zeitschr. 21 (1909) 131-304, and 22 (1909) 352-356; Springer: Berlin/Heidelberg, Germany, 1909. [Google Scholar]
- Arrhenius, S. On the dissociation of substances dissolved in water. Z. Phys. Chem 1887, 1, 631. [Google Scholar] [CrossRef]
- Friedenthal, H. Die Bestimmung der Reaktion einer Flüssigkeit mit Hilfe von Indikatoren. Z. Für Elektrochem. Und Angew. Phys. Chem. 1904, 10, 113–119. [Google Scholar] [CrossRef]
- Debye, P.; Hückel, E. On the theory of electrolytes. I. Freezing point depression and related phenomena. Phys. Z 1923, 24, 185–206. [Google Scholar]
- Burton, R.F. Defining and teaching pH. J. Chem. Educ. 2007, 84, 1129. [Google Scholar] [CrossRef]
- Galster, H. pH Measurement; VCH: New York, NY, USA, 1991. [Google Scholar]
- Bates, R.G. Definitions of pH scales. Chem. Rev. 1948, 42, 1–61. [Google Scholar] [CrossRef]
- Bates, R.G.; Vijh, A.K. Determination of pH: Theory and practice. J. Electrochem. Soc. 1973, 120, 263C. [Google Scholar] [CrossRef]
- Whiffen, D.H. Manual of Symbols and Terminology for Physicochemical Quantities and Units; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 1-4832-7887-5. [Google Scholar]
- Haring, M. Potentiometric Titrations. ACS Publ. 1926, 3, 846. [Google Scholar] [CrossRef] [Green Version]
- Haraldsson, C.; Anderson, L.G.; Hassellöv, M.; Hulth, S.; Olsson, K. Rapid, high-precision potentiometric titration of alkalinity in ocean and sediment pore waters. Deep Sea Res. Part I Oceanogr. Res. Pap. 1997, 44, 2031–2044. [Google Scholar] [CrossRef]
- Covington, A.K. Recent developments in pH standardisation and measurement for dilute aqueous solutions. Anal. Chim. Acta 1981, 127, 1–21. [Google Scholar] [CrossRef]
- Bates, R.G.; Popovych, O. The modern meaning of pH. C R C Crit. Rev. Anal. Chem. 1981, 10, 247–278. [Google Scholar] [CrossRef]
- Covington, A.K.; Bates, R.; Durst, R. Definition of pH scales, standard reference values, measurement of pH and related terminology (Recommendations 1984). Pure Appl. Chem. 1985, 57, 531–542. [Google Scholar] [CrossRef]
- Duffy, J.; Baucke, F. Effect of glass composition and basicity on reduction of metal ions to the metallic state in melts. Phys. Chem. Glasses 1997, 38, 25–26. [Google Scholar]
- Xu, Z.; Dong, Q.; Otieno, B.; Liu, Y.; Williams, I.; Cai, D.; Li, Y.; Lei, Y.; Li, B. Real-time in situ sensing of multiple water quality related parameters using micro-electrode array (MEA) fabricated by inkjet-printing technology (IPT). Sens. Actuators B Chem. 2016, 237, 1108–1119. [Google Scholar] [CrossRef]
- Pansu, M.; Gautheyrou, J. pH Measurement; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Overton, T.W. Recombinant protein production in bacterial hosts. Drug Discov. Today 2014, 19, 590–601. [Google Scholar] [CrossRef]
- Han, U.; Seo, Y.; Hong, J. Effect of pH on the structure and drug release profiles of layer-by-layer assembled films containing polyelectrolyte, micelles, and graphene oxide. Sci. Rep. 2016, 6, 24158. [Google Scholar] [CrossRef]
- Pudipeddi, M.; Zannou, E.A.; Vasanthavada, M.; Dontabhaktuni, A.; Royce, A.E.; Joshi, Y.M.; Serajuddin, A.T.M. Measurement of Surface pH of Pharmaceutical Solids: A Critical Evaluation of Indicator Dye-Sorption Method and its Comparison with Slurry pH Method. J. Pharm. Sci. 2008, 97, 1831–1842. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Zhang, Q. pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 2012, 82, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, C.; Kawabata, Y.; Wada, K.; Yamada, S.; Onoue, S. Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility. Expert Opin. Drug Deliv. 2014, 11, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Casey, J.R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010, 11, 50–61. [Google Scholar] [CrossRef]
- Wu, Z.L.; Gao, M.X.; Wang, T.T.; Wan, X.Y.; Zheng, L.L.; Huang, C.Z. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale 2014, 6, 3868–3874. [Google Scholar] [CrossRef]
- Webb, B.A.; Chimenti, M.; Jacobson, M.P.; Barber, D.L. Dysregulated pH: A perfect storm for cancer progression. Nat. Rev. Cancer 2011, 11, 671–677. [Google Scholar] [CrossRef]
- Gethin, G. The significance of surface pH in chronic wounds. Wounds UK 2007, 3, 52. [Google Scholar]
- Schneider, L.A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of pH on wound-healing: A new perspective for wound-therapy? Arch. Dermatol. Res. 2007, 298, 413–420. [Google Scholar] [CrossRef]
- Stubbs, M.; McSheehy, P.M.; Griffiths, J.R.; Bashford, C.L. Causes and consequences of tumour acidity and implications for treatment. Mol. Med. Today 2000, 6, 15–19. [Google Scholar] [CrossRef]
- Nie, H.; Li, M.; Li, Q.; Liang, S.; Tan, Y.; Sheng, L.; Shi, W.; Zhang, S.X.-A. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem. Mater. 2014, 26, 3104–3112. [Google Scholar] [CrossRef]
- Korting, H.; Hübner, K.; Greiner, K.; Hamm, G.; Braun-Falco, O. Differences in the skin surface pH and bacterial microflora due to the long-term application of synthetic detergent preparations of pH 5.5 and pH 7.0. Results of a crossover trial in healthy volunteers. Acta Derm Venereol 1990, 70, 429–431. [Google Scholar]
- Chen, W.; Morrow, B.H.; Shi, C.; Shen, J.K. Recent development and application of constant pH molecular dynamics. Mol. Simul. 2014, 40, 830–838. [Google Scholar] [CrossRef]
- Qian, J.; Khandogin, J.; West, A.H.; Cook, P.F. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae. Biochemistry 2008, 47, 6851–6858. [Google Scholar] [CrossRef]
- Milton, M.; Quinn, T. Primary methods for the measurement of amount of substance. Metrologia 2001, 38, 289. [Google Scholar] [CrossRef]
- Mariassy, M.; Pratt, K.W.; Spitzer, P. Major applications of electrochemical techniques at national metrology institutes. Metrologia 2009, 46, 199. [Google Scholar] [CrossRef]
- Harned, H.S.; Robinson, R.A. The ionic concentrations and activity coefficients of weak electrolytes in certain salt solutions. J. Am. Chem. Soc. 1928, 50, 3157–3178. [Google Scholar] [CrossRef]
- Bates, R.G.; Acree, S. pH values of certain phosphate-chloride mixtures and the second dissociation constant of phosphoric acid from 0° to 60 °C. J. Res. Natl. Bur. Stand. 1943, 30, 129–155. [Google Scholar] [CrossRef]
- Hamer, W.; Acree, S. A method for the determination of the pH of 0.05-molal solutions of acid potassium phthalate with or without potassium chloride. J. Res. Natl. Bur. Stand. 1944, 32, 215–227. [Google Scholar] [CrossRef]
- Bates, R.; Guggenheim, E. Report on the standardization of pH and related terminology. Pure Appl. Chem. 1960, 1, 163–168. [Google Scholar] [CrossRef]
- Baucke, F.G. New IUPAC recommendations on the measurement of pH–background and essentials. Anal. Bioanal. Chem. 2002, 374, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, P.; Werner, B. Improved reliability of pH measurements. Anal. Bioanal. Chem. 2002, 374, 787–795. [Google Scholar] [CrossRef]
- Baucke, F.G. Heiß-sterilisierte lagerfähige NBS-(DIN)-pH-Standardpufferlösungen–Untersuchung ihrer thermischen Stabilität. Chem. Ing. Tech. 1977, 49, 739–740. [Google Scholar] [CrossRef]
- Baucke, F. Lower temperature limit of NBS (DIN) pH standard buffer solution potassium tetroxalate. Electrochim. Acta 1979, 24, 95–97. [Google Scholar] [CrossRef]
- Baucke, F. Differential-potentiometric cell for the restandardization of pH reference materials. J. Electroanal. Chem. 1994, 368, 67–75. [Google Scholar] [CrossRef]
- Wilson, G.S.; Buck, R.; Rondinini, S.; Covington, A.; Baucke, F.; Brett, C.; Camões, M.; Milton, M.; Mussini, T.; Naumann, R. Measurement of pH. Definition, standards, and procedures. Pure Appl. Chem. 2002, 74, 2169–2200. [Google Scholar]
- Moritz, H. Geodetic reference system 1980. Bull. Géodésique 1980, 54, 395–405. [Google Scholar] [CrossRef]
- Baucke, F.G. Thermodynamic origin of the sub-Nernstian response of glass electrodes. Anal. Chem. 1994, 66, 4519–4524. [Google Scholar] [CrossRef]
- Mortimer, R.G. Physical Chemistry; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Koryta, J.; Dvorak, J.; Kavan, L. Chapter 6. Principles of Electrochemistry, 2nd ed.; Wiley: New York, NY, USA, 1993; Volume 410. [Google Scholar]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Devynck, J.; Hadid, A.B.; Fabre, P.-L. The hydrogen electrode as pH indicator in hydrogen fluoride and superacid media. J. Inorg. Nucl. Chem. 1979, 41, 1159–1161. [Google Scholar] [CrossRef]
- Jerkiewicz, G. Standard and reversible hydrogen electrodes: Theory, design, operation, and applications. ACS Catal. 2020, 10, 8409–8417. [Google Scholar] [CrossRef]
- Platt, B.S.; Dickinson, S. The technique of glass electrode measurements. Biochem. J. 1933, 27, 1069. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Mukherjee, K.; Shoukat, R.; Dong, H. A review on pH sensitive materials for sensors and detection methods. Microsyst. Technol. 2017, 23, 4391–4404. [Google Scholar] [CrossRef]
- Yuqing, M.; Jianrong, C.; Keming, F. New technology for the detection of pH. J. Biochem. Biophys. Methods 2005, 63, 1–9. [Google Scholar] [CrossRef] [PubMed]
- MacInnes, D.A.; Dole, M. Tests of a new type glass electrode. Ind. Eng. Chem. Anal. Ed. 1929, 1, 57–59. [Google Scholar] [CrossRef]
- MacInnes, D.A.; Dole, M. The behavior of glass electrodes of different compositions. J. Am. Chem. Soc. 1930, 52, 29–36. [Google Scholar] [CrossRef]
- Dole, M. The Glass Electrode: Methods, Applications, and Theory; J. Wiley & Sons, Incorporated: Hoboken, NJ, USA, 1941. [Google Scholar]
- Belyustin, A.A. The centenary of glass electrode: From Max Cremer to FGK Baucke. J. Solid State Electrochem. 2011, 15, 47–65. [Google Scholar] [CrossRef]
- Perley, G.A. Glasses for measurement of pH. Anal. Chem. 1949, 21, 394–401. [Google Scholar] [CrossRef]
- Skoog, D.A.; Holler, F.J.; Crouch, S.R. Instrumental Analysis; Brooks/Cole, Cengage Learning Belmont: Boston, MA, USA, 2007. [Google Scholar]
- Tabaković, I.; Davidović, A.; Müller, W.E.; Zahn, R.K.; Sladić, D.; Dogović, N.; Gašić, M.J. Electrochemical reactivity of biologically active quinone/hydroquinone sesquiterpenoids on glassy carbon electrodes. Bioelectrochem. Bioenerg. 1987, 17, 567–577. [Google Scholar] [CrossRef]
- Ma, W.; Long, Y.-T. Quinone/hydroquinone-functionalized biointerfaces for biological applications from the macro-to nano-scale. Chem. Soc. Rev. 2014, 43, 30–41. [Google Scholar] [CrossRef]
- Li, J.; Sun, C.-L.; Tan, L.; Xie, Y.-L.; Zhang, H.-L. Investigation of an electrochemically switched heterocyclization reaction on gold surface. Langmuir 2013, 29, 5199–5206. [Google Scholar] [CrossRef]
- Ji, X.; Palui, G.; Avellini, T.; Na, H.B.; Yi, C.; Knappenberger, K.L., Jr.; Mattoussi, H. On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine. J. Am. Chem. Soc. 2012, 134, 6006–6017. [Google Scholar] [CrossRef]
- Medintz, I.; Stewart, M.; Trammell, S.; Susumu, K.; Delehanty, J.; Mei, B.; Melinger, J.; Blanco, J. Canosa, PE Dawson and H. Mattoussi. Nat. Mater 2010, 9, 676–684. [Google Scholar] [CrossRef]
- O’Driscoll, S.; McEvoy, H.M.; McDonagh, C.; MacCraith, B.D. Enhanced fluorescence-based optical sensor performance using a simple optical collection strategy. IEEE Photonics Technol. Lett. 2011, 24, 425–427. [Google Scholar] [CrossRef]
- Blue, R.; Kent, N.; Polerecky, L.; McEvoy, H.; Gray, D.; MacCraith, B. Platform for enhanced detection efficiency in luminescence-based sensors. Electron. Lett. 2005, 41, 682–684. [Google Scholar] [CrossRef]
- Burke, C.S.; McGaughey, O.; Sabattié, J.-M.; Barry, H.; McEvoy, A.K.; McDonagh, C.; MacCraith, B.D. Development of an integrated optic oxygen sensor using a novel, generic platform. Analyst 2005, 130, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Duveneck, G.L.; Abel, A.P.; Bopp, M.A.; Kresbach, G.M.; Ehrat, M. Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids. Anal. Chim. Acta 2002, 469, 49–61. [Google Scholar] [CrossRef]
- Puyol, M.; Salinas, Í.; Garcés, I.; Villuendas, F.; Llobera, A.; Domínguez, C.; Alonso, J. Improved integrated waveguide absorbance optodes for ion-selective sensing. Anal. Chem. 2002, 74, 3354–3361. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.; Polerecky, L.; MacCraith, B. Design and fabrication of enhanced polymer waveguide platforms for absorption-based optical chemical sensors. Meas. Sci. Technol. 2004, 15, 1140. [Google Scholar] [CrossRef]
- Wencel, D.; Abel, T.; McDonagh, C. Optical chemical pH sensors. Anal. Chem. 2014, 86, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.I.; Goldstein, S.R.; Fitzgerald, R.V.; Buckhold, D.K. Fiber optic pH probe for physiological use. Anal. Chem. 1980, 52, 864–869. [Google Scholar] [CrossRef]
- Kostov, Y.; Tzonkov, S.; Yotova, L. Dynamic model of an optical absorption-based pH sensor. Analyst 1993, 118, 987–990. [Google Scholar] [CrossRef]
- Gabor, G.; Chadha, S.; Walt, D.R. Sensitivity enhancement of fluorescent pH indicators using pH-dependent energy transfer. Anal. Chim. Acta 1995, 313, 131–137. [Google Scholar] [CrossRef]
- Gu, B. Biocompatible Fiber-Optic pH Sensor Based on Optical Fiber Modal Interferometer Self-Assembled With Sodium Alginate/Polyethylenimine Coating. IEEE Sens. J. 2012, 12, 1477–1482. [Google Scholar] [CrossRef]
- Alabbas, S.; Ashworth, D.; Narayanaswamy, R. Design and Performance Features of an Optical-Fibre Reflectance pH Sensor; IEEE Xplore: New York, NY, USA, 1989; Volume 26, pp. 373–380. [Google Scholar]
- Schyrr, B.; Pasche, S.; Scolan, E.; Ischer, R.; Ferrario, D.; Porchet, J.-A.; Voirin, G. Development of a polymer optical fiber pH sensor for on-body monitoring application. Sens. Actuators B Chem. 2014, 194, 238–248. [Google Scholar] [CrossRef]
- Cajlakovic, M.; Lobnik, A.; Werner, T. Stability of new optical pH sensing material based on cross-linked poly (vinyl alcohol) copolymer. Anal. Chim. Acta 2002, 455, 207–213. [Google Scholar] [CrossRef]
- Goldstein, S.; Peterson, J.; Fitzgerald, R. A miniature fiber optic pH sensor for physiological use. J. Biomech. Eng. 1980, 102, 141–146. [Google Scholar] [CrossRef]
- Kirkbright, G.F.; Narayanaswamy, R.; Welti, N.A. Fibre-optic pH probe based on the use of an immobilised colorimetric indicator. Analyst 1984, 109, 1025–1028. [Google Scholar] [CrossRef]
- Bergveld, P. Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Trans. Biomed. Eng. 1970, 17, 70–71. [Google Scholar] [CrossRef]
- Swaminathan, S.; Krishnan, S.M.; Khiang, L.W.; Ahamed, Z.; Chiang, G. Microsensor characterization in an integrated blood gas measurement system. In Proceedings of the Asia-Pacific Conference on Circuits and Systems, Singapore, 16–18 December 2002; IEEE: Bali, Indonesia, 2002; pp. 15–20. [Google Scholar]
- Rani, R.A.; Sidek, O. ISFET pH Sensor Characterization: Towards Biosensor Microchip Application; IEEE: Bali, Indonesia, 2004; pp. 660–663. [Google Scholar]
- Chin, Y.-L.; Chou, J.-C.; Sun, T.-P.; Liao, H.-K.; Chung, W.-Y.; Hsiung, S.-K. A novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process. Sens. Actuators B Chem. 2001, 75, 36–42. [Google Scholar] [CrossRef]
- Morishita, S.; Suzuki, K.; Ashida, T.; Tasaka, K.; Nakada, M. Development of an On-Board Type Oil Deterioration Sensor; SAE Technical Paper: Chiang Mai, Thailand, 1993. [Google Scholar]
- Xiao, F.; Li, Y.; Zan, X.; Liao, K.; Xu, R.; Duan, H. Growth of metal–metal oxide nanostructures on freestanding graphene paper for flexible biosensors. Adv. Funct. Mater. 2012, 22, 2487–2494. [Google Scholar] [CrossRef]
- Campuzano, S.; Wang, J. Nanobioelectroanalysis based on carbon/inorganic hybrid nanoarchitectures. Electroanalysis 2011, 23, 1289–1300. [Google Scholar] [CrossRef]
- Wu, W.-Y.; Zhong, X.; Wang, W.; Miao, Q.; Zhu, J.-J. Flexible PDMS-based three-electrode sensor. Electrochem. Commun. 2010, 12, 1600–1604. [Google Scholar] [CrossRef]
- Li, C.; Han, J.; Ahn, C.H. Flexible biosensors on spirally rolled micro tube for cardiovascular in vivo monitoring. Biosens. Bioelectron. 2007, 22, 1988–1993. [Google Scholar] [CrossRef]
- Pradhan, D.; Niroui, F.; Leung, K. High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate. ACS Appl. Mater. Interfaces 2010, 2, 2409–2412. [Google Scholar] [CrossRef]
- Yao, S.; Wang, M.; Madou, M. A pH electrode based on melt-oxidized iridium oxide. J. Electrochem. Soc. 2001, 148, H29. [Google Scholar] [CrossRef]
- Elsen, H.A.; Monson, C.F.; Majda, M. Effects of electrodeposition conditions and protocol on the properties of iridium oxide pH sensor electrodes. J. Electrochem. Soc. 2008, 156, F1. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, T.; Cai, Z.; Cao, Y.; Yang, H.; Duan, Y.Y. Anodically electrodeposited iridium oxide films microelectrodes for neural microstimulation and recording. Sens. Actuators B Chem. 2009, 137, 334–339. [Google Scholar] [CrossRef]
- Wang, M.; Yao, S.; Madou, M. A long-term stable iridium oxide pH electrode. Sens. Actuators B Chem. 2002, 81, 313–315. [Google Scholar] [CrossRef]
- Lima, A.C.; Jesus, A.A.; Tenan, M.A.; de Souza Silva, A.F.; Oliveira, A.F. Evaluation of a high sensitivity PbO2 pH-sensor. Talanta 2005, 66, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Fog, A.; Buck, R.P. Electronic semiconducting oxides as pH sensors. Sens. Actuators 1984, 5, 137–146. [Google Scholar] [CrossRef]
- Zhang, W.-D.; Xu, B. A solid-state pH sensor based on WO3-modified vertically aligned multiwalled carbon nanotubes. Electrochem. Commun. 2009, 11, 1038–1041. [Google Scholar] [CrossRef]
- Baur, J.E.; Spaine, T.W. Electrochemical deposition of iridium (IV) oxide from alkaline solutions of iridium (III) oxide. J. Electroanal. Chem. 1998, 443, 208–216. [Google Scholar] [CrossRef]
- Dong, Q.; Song, D.; Huang, Y.; Xu, Z.; Chapman, J.H.; Willis, W.S.; Li, B.; Lei, Y. High-temperature annealing enabled iridium oxide nanofibers for both non-enzymatic glucose and solid-state pH sensing. Electrochim. Acta 2018, 281, 117–126. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Lafleur, J.P.; Jönsson, A.; Senkbeil, S.; Kutter, J.P. Recent advances in lab-on-a-chip for biosensing applications. Biosens. Bioelectron. 2016, 76, 213–233. [Google Scholar] [CrossRef]
- Kou, S.; Cheng, D.; Sun, F.; Hsing, I.-M. Microfluidics and microbial engineering. Lab A Chip 2016, 16, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Wang, J.; Zhang, P.; Zhang, Y.; Miao, Y.; Gao, S.; Deng, Y.; Geng, L. Recent advances in microfluidic chip integrated electronic biosensors for multiplexed detection. Biosens. Bioelectron. 2018, 121, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Dutse, S.W.; Yusof, N.A. Microfluidics-based lab-on-chip systems in DNA-based biosensing: An overview. Sensors 2011, 11, 5754–5768. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yan, S.; Yuan, D.; Alici, G.; Nguyen, N.-T.; Warkiani, M.E.; Li, W. Fundamentals and applications of inertial microfluidics: A review. Lab A Chip 2016, 16, 10–34. [Google Scholar] [CrossRef] [PubMed]
- Yi-Qiang, F.; Hong-Liang, W.; Ke-Xin, G.; Jing-Ji, L.; Dong-Ping, C.; ZHANG, Y.-J. Applications of modular microfluidics technology. Chin. J. Anal. Chem. 2018, 46, 1863–1871. [Google Scholar]
- Samiei, E.; Tabrizian, M.; Hoorfar, M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab A Chip 2016, 16, 2376–2396. [Google Scholar] [CrossRef] [PubMed]
- Andersson, H.; Van den Berg, A. Microfluidic devices for cellomics: A review. Sens. Actuators B Chem. 2003, 92, 315–325. [Google Scholar] [CrossRef]
- Du, G.; Fang, Q.; den Toonder, J.M. Microfluidics for cell-based high throughput screening platforms—A review. Anal. Chim. Acta 2016, 903, 36–50. [Google Scholar] [CrossRef]
- Mashaghi, S.; Abbaspourrad, A.; Weitz, D.A.; van Oijen, A.M. Droplet microfluidics: A tool for biology, chemistry and nanotechnology. TrAC Trends Anal. Chem. 2016, 82, 118–125. [Google Scholar] [CrossRef]
- Reverté, L.; Prieto-Simón, B.; Campàs, M. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review. Anal. Chim. Acta 2016, 908, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Zhou, J.; Wu, H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 2013, 46, 2396–2406. [Google Scholar] [CrossRef]
- Fiorini, G.S.; Chiu, D.T. Disposable microfluidic devices: Fabrication, function, and application. BioTechniques 2005, 38, 429–446. [Google Scholar] [CrossRef]
- Yang, K.; Peretz-Soroka, H.; Liu, Y.; Lin, F. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones. Lab A Chip 2016, 16, 943–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The upcoming 3D-printing revolution in microfluidics. Lab A Chip 2016, 16, 1720–1742. [Google Scholar] [CrossRef]
- Lee, K.G.; Park, K.J.; Seok, S.; Shin, S.; Park, J.Y.; Heo, Y.S.; Lee, S.J.; Lee, T.J. 3D printed modules for integrated microfluidic devices. Rsc Adv. 2014, 4, 32876–32880. [Google Scholar] [CrossRef]
- Martínez-López, J.I.; Mojica, M.; Rodríguez, C.A.; Siller, H.R. Xurography as a rapid fabrication alternative for point-of-care devices: Assessment of passive micromixers. Sensors 2016, 16, 705. [Google Scholar] [CrossRef] [PubMed]
- Waheed, S.; Cabot, J.M.; Macdonald, N.P.; Lewis, T.; Guijt, R.M.; Paull, B.; Breadmore, M.C. 3D printed microfluidic devices: Enablers and barriers. Lab A Chip 2016, 16, 1993–2013. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, A.A.; Popma, A.; Wong, W.; Nguyen, T.; Pan, Y.; Xu, J. 3D printing: An emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid. Nanofluidics 2016, 20, 50. [Google Scholar] [CrossRef]
- Antony, R.; Nandagopal, G.; Sreekumar, N.; Selvaraju, N. Detection principles and development of microfluidic sensors in the last decade. Microsyst. Technol. 2014, 20, 1051–1061. [Google Scholar] [CrossRef]
- Jokerst, J.C.; Emory, J.M.; Henry, C.S. Advances in microfluidics for environmental analysis. Analyst 2012, 137, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-F.; Lin, J.-M. Applications of microfluidic systems in environmental analysis. Anal. Bioanal. Chem. 2009, 393, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Jaywant, S.A.; Arif, K.M. A comprehensive review of microfluidic water quality monitoring sensors. Sensors 2019, 19, 4781. [Google Scholar] [CrossRef]
- Pol, R.; Céspedes, F.; Gabriel, D.; Baeza, M. Microfluidic lab-on-a-chip platforms for environmental monitoring. TrAC Trends Anal. Chem. 2017, 95, 62–68. [Google Scholar] [CrossRef]
- Lynn Jr, N.S.; Martínez-López, J.-I.; Bocková, M.; Adam, P.; Coello, V.; Siller, H.R.; Homola, J. Biosensing enhancement using passive mixing structures for microarray-based sensors. Biosens. Bioelectron. 2014, 54, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Ward, K.; Fan, Z.H. Mixing in microfluidic devices and enhancement methods. J. Micromechanics Microengineering 2015, 25, 094001. [Google Scholar] [CrossRef]
- Ghosh, S.; Chang, Y.-F.; Yang, D.-M.; Chattopadhyay, S. Upconversion nanoparticle-mOrange protein FRET nanoprobes for self-ratiometric/ratiometric determination of intracellular pH, and single cell pH imaging. Biosens. Bioelectron. 2020, 155, 112115. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, P.; Bai, T.; Galvan, D.D.; Hung, H.-C.; Zhou, N.; Jiang, S.; Yu, Q. Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS. Biosens. Bioelectron. 2015, 73, 202–207. [Google Scholar] [CrossRef]
- Sakata, T.; Sugimoto, H.; Saito, A. Live monitoring of microenvironmental pH based on extracellular acidosis around cancer cells with cell-coupled gate ion-sensitive field-effect transistor. Anal. Chem. 2018, 90, 12731–12736. [Google Scholar] [CrossRef] [PubMed]
- McBeth, C.; Al Dughaishi, R.; Paterson, A.; Sharp, D. Ubiquinone modified printed carbon electrodes for cell culture pH monitoring. Biosens. Bioelectron. 2018, 113, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Ges, I.A.; Ivanov, B.L.; Schaffer, D.K.; Lima, E.A.; Werdich, A.A.; Baudenbacher, F.J. Thin-film IrOx pH microelectrode for microfluidic-based microsystems. Biosens. Bioelectron. 2005, 21, 248–256. [Google Scholar] [CrossRef]
- Weltin, A.; Slotwinski, K.; Kieninger, J.; Moser, I.; Jobst, G.; Wego, M.; Ehret, R.; Urban, G.A. Cell culture monitoring for drug screening and cancer research: A transparent, microfluidic, multi-sensor microsystem. Lab A Chip 2014, 14, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Dabaghi, M.; Saraei, N.; Xu, G.; Chandiramohan, A.; Yeung, J.; Nguyen, J.P.; Vukmirovic, M.; Selvaganapathy, P.R.; Hirota, J.A. PHAIR: A biosensor for pH measurement in air–liquid interface cell culture. Sci. Rep. 2021, 11, 3477. [Google Scholar] [CrossRef]
- Ges, I.; Baudenbacher, F. Microfluidic device to confine single cardiac myocytes in sub-nanoliter volumes for extracellular pH measurements. J. Exp. Nanosci. 2008, 3, 63–75. [Google Scholar] [CrossRef]
- Ges, I.A.; Ivanov, B.L.; Werdich, A.A.; Baudenbacher, F.J. Differential pH measurements of metabolic cellular activity in nl culture volumes using microfabricated iridium oxide electrodes. Biosens. Bioelectron. 2007, 22, 1303–1310. [Google Scholar] [CrossRef]
- Ge, Z.; Brown, C.W.; Sun, L.; Yang, S.C. Fiber-optic pH sensor based on evanescent wave absorption spectroscopy. Anal. Chem. 1993, 65, 2335–2338. [Google Scholar] [CrossRef]
- Motellier, S.; Noire, M.; Pitsch, H.; Dureault, B. pH determination of clay interstitial water using a fiber-optic sensor. Sens. Actuators B Chem. 1995, 29, 345–352. [Google Scholar] [CrossRef]
- Vishnoi, G.; Goel, T.C.; Pillai, P. pH Optrode for the Complete Working Range; SPIE: Boston, MA, USA, 1999; pp. 319–325. [Google Scholar]
- Lemos, S.G.; Nogueira, A.R.A.; Torre-Neto, A.; Parra, A.; Alonso, J. Soil calcium and pH monitoring sensor system. J. Agric. Food Chem. 2007, 55, 4658–4663. [Google Scholar] [CrossRef]
- Robinson, K.L.; Lawrence, N.S. Redox-sensitive copolymer: A single-component pH sensor. Anal. Chem. 2006, 78, 2450–2455. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Goponenko, A.V.; Asher, S.A. Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials. J. Am. Chem. Soc. 2008, 130, 3113–3119. [Google Scholar] [CrossRef] [PubMed]
- Johansson, G.; Karlberg, B.; Wikby, A. The hydrogen-ion selective glass electrode. Talanta 1975, 22, 953–966. [Google Scholar] [CrossRef]
- Wang, M.; Ha, Y. An electrochemical approach to monitor pH change in agar media during plant tissue culture. Biosens. Bioelectron. 2007, 22, 2718–2723. [Google Scholar] [CrossRef]
- Manz, A.; Graber, N.; Widmer, H. áM Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators B Chem. 1990, 1, 244–248. [Google Scholar] [CrossRef]
- Ahmet Burak, U. Development & Characterization of Multifunctional Microfluidic Materials. Ph.D. Thesis, NC State University, Raleigh, CA, USA, 2013. [Google Scholar]
- McCormick, R.M.; Nelson, R.J.; Alonso-Amigo, M.G.; Benvegnu, D.J.; Hooper, H.H. Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal. Chem. 1997, 69, 2626–2630. [Google Scholar] [CrossRef]
- Tahirbegi, I.B.; Ehgartner, J.; Sulzer, P.; Zieger, S.; Kasjanow, A.; Paradiso, M.; Strobl, M.; Bouwes, D.; Mayr, T. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence. Biosens. Bioelectron. 2017, 88, 188–195. [Google Scholar] [CrossRef]
- Liu, R.H.; Yu, Q.; Beebe, D.J. Fabrication and characterization of hydrogel-based microvalves. J. Microelectromech. Syst. 2002, 11, 45–53. [Google Scholar] [CrossRef]
- Buzby, J.C.; Roberts, T. Economic costs and trade impacts of microbial foodborne ilness. World Health Stat. Q. 1997, 50, 57–66. [Google Scholar]
- Bitton, G. Microbiology of Drinking Water Production and Distribution; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Liu, J.; Jasim, I.; Shen, Z.; Zhao, L.; Dweik, M.; Zhang, S.; Almasri, M. A microfluidic based biosensor for rapid detection of Salmonella in food products. PLoS ONE 2019, 14, e0216873. [Google Scholar] [CrossRef]
- Huang, W.-D.; Deb, S.; Seo, Y.-S.; Rao, S.; Chiao, M.; Chiao, J. A passive radio-frequency pH-sensing tag for wireless food-quality monitoring. IEEE Sens. J. 2011, 12, 487–495. [Google Scholar] [CrossRef]
- Yue, Y.; Huo, F.; Lee, S.; Yin, C.; Yoon, J.; Chao, J.; Zhang, Y.; Cheng, F. A Dual Colorimetric/Fluorescence System for Determining pH Based on the Nucleophilic Addition Reaction of an o-Hydroxymerocyanine Dye. Chem. Eur. J. 2016, 22, 1239–1243. [Google Scholar] [CrossRef]
- Chen, S.; Hong, Y.; Liu, Y.; Liu, J.; Leung, C.W.; Li, M.; Kwok, R.T.; Zhao, E.; Lam, J.W.; Yu, Y. Full-range intracellular pH sensing by an aggregation-induced emission-active two-channel ratiometric fluorogen. J. Am. Chem. Soc. 2013, 135, 4926–4929. [Google Scholar] [CrossRef] [PubMed]
- Asanuma, D.; Takaoka, Y.; Namiki, S.; Takikawa, K.; Kamiya, M.; Nagano, T.; Urano, Y.; Hirose, K. Acidic-pH-activatable fluorescence probes for visualizing exocytosis dynamics. Angew. Chem. Int. Ed. 2014, 53, 6085–6089. [Google Scholar] [CrossRef] [PubMed]
- Best, Q.A.; Liu, C.; van Hoveln, P.D.; McCarroll, M.E.; Scott, C.N. Anilinomethylrhodamines: pH sensitive probes with tunable photophysical properties by substituent effect. J. Org. Chem. 2013, 78, 10134–10143. [Google Scholar] [CrossRef] [PubMed]
- Richter, C.; Schneider, C.; Quick, M.; Volz, P.; Mahrwald, R.; Hughes, J.; Dick, B.; Alexiev, U.; Ernsting, N. Dual-fluorescence pH probe for bio-labelling. Phys. Chem. Chem. Phys. 2015, 17, 30590–30597. [Google Scholar] [CrossRef]
- Park, Y.; Postupna, O.; Zhugayevych, A.; Shin, H.; Park, Y.-S.; Kim, B.; Yen, H.-J.; Cheruku, P.; Martinez, J.; Park, J. A new pH sensitive fluorescent and white light emissive material through controlled intermolecular charge transfer. Chem. Sci. 2015, 6, 789–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trombetta, E.S.; Ebersold, M.; Garrett, W.; Pypaert, M.; Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science 2003, 299, 1400–1403. [Google Scholar] [CrossRef]
- Punjiya, M.; Moon, C.H.; Matharu, Z.; Nejad, H.R.; Sonkusale, S. A three-dimensional electrochemical paper-based analytical device for low-cost diagnostics. Analyst 2018, 143, 1059–1064. [Google Scholar] [CrossRef]
- Lopez-Ruiz, N.; Curto, V.F.; Erenas, M.M.; Benito-Lopez, F.; Diamond, D.; Palma, A.J.; Capitan-Vallvey, L.F. Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal. Chem. 2014, 86, 9554–9562. [Google Scholar] [CrossRef]
- Zhong, Q.; Ding, H.; Gao, B.; He, Z.; Gu, Z. Advances of microfluidics in biomedical engineering. Adv. Mater. Technol. 2019, 4, 1800663. [Google Scholar] [CrossRef]
- Liu, W.; Sun, R.; Ge, J.-F.; Xu, Y.-J.; Xu, Y.; Lu, J.-M.; Itoh, I.; Ihara, M. Reversible Near-Infrared pH Probes Based on Benzo[a]phenoxazine. Anal. Chem. 2013, 85, 7419–7425. [Google Scholar] [CrossRef] [PubMed]
- Uria, N.; Abramova, N.; Bratov, A.; Muñoz-Pascual, F.-X.; Baldrich, E. Miniaturized metal oxide pH sensors for bacteria detection. Talanta 2016, 147, 364–369. [Google Scholar] [CrossRef]
- Hannah, S.; Blair, E.; Corrigan, D.K. Developments in microscale and nanoscale sensors for biomedical sensing. Curr. Opin. Electrochem. 2020, 23, 7–15. [Google Scholar] [CrossRef]
- Wang, H.-S.; Fu, G.-D.; Li, X.-S. Functional polymeric nanofibers from electrospinning. Recent Pat. Nanotechnol. 2009, 3, 21–31. [Google Scholar] [CrossRef]
- Li, D.; Xia, Y. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170. [Google Scholar] [CrossRef]
- Van der Schueren, L.; Mollet, T.; Ceylan, Ö.; De Clerck, K. The development of polyamide 6.6 nanofibres with a pH-sensitive function by electrospinning. Eur. Polym. J. 2010, 46, 2229–2239. [Google Scholar] [CrossRef]
- Jamil, M.S.; Jamil, M.A.; Mazhar, A.; Ikram, A.; Ahmed, A.; Munawar, U. Smart environment monitoring system by employing wireless sensor networks on vehicles for pollution free smart cities. Procedia Eng. 2015, 107, 480–484. [Google Scholar] [CrossRef]
- Ullo, S.L.; Sinha, G. Advances in smart environment monitoring systems using IoT and sensors. Sensors 2020, 20, 3113. [Google Scholar] [CrossRef]
- Kulkarni, P.; Kute, P. Internet of things based system for remote monitoring of weather parameters and applications. Int. J. Adv. Electron. Comput. Sci 2016, 3, 68–73. [Google Scholar]
- Jovanovska, E.M.; Davcev, D. No Pollution Smart City Sightseeing Based on WSN Monitoring System; IEEE: Bali, Indonesia, 2020; pp. 1–6. [Google Scholar]
- Arco, E.; Boccardo, P.; Gandino, F.; Lingua, A.; Noardo, F.; Rebaudengo, M. An integrated approach for pollution monitoring: Smart acquirement and smart information. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 67–74. [Google Scholar] [CrossRef]
- Pavithra, G. Intelligent monitoring device for agricultural greenhouse using IOT. J. Agric. Sci. Food Res. 2018, 9, 2–5. [Google Scholar]
- Elmustafa, S.A.A.; Mujtaba, E.Y. Internet of things in smart environment: Concept, applications, challenges, and future directions. World Sci. News 2019, 134, 1–51. [Google Scholar]
- Pathak, A.; AmazUddin, M.; Abedin, M.J.; Andersson, K.; Mustafa, R.; Hossain, M.S. IoT based smart system to support agricultural parameters: A case study. Procedia Comput. Sci. 2019, 155, 648–653. [Google Scholar] [CrossRef]
- Sivakannu, G.; Balaji, S. Implementation of smart farm monitoring using IoT. Int. J. Curr. Eng. Sci. Res 2017, 4, 21–27. [Google Scholar]
- Haick, H.; Tang, N. Artificial intelligence in medical sensors for clinical decisions. ACS Nano 2021, 15, 3557–3567. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Jeang, W.J.; Ghaffari, R.; Rogers, J.A. Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem. 2019, 12, 1–22. [Google Scholar] [CrossRef]
- Wei, Y.; Gadaria-Rathod, N.; Epstein, S.; Asbell, P. Tear cytokine profile as a noninvasive biomarker of inflammation for ocular surface diseases: Standard operating procedures. Investig. Ophthalmol. Vis. Sci. 2013, 54, 8327–8336. [Google Scholar] [CrossRef]
- Qin, M.; Guo, H.; Dai, Z.; Yan, X.; Ning, X. Advances in flexible and wearable pH sensors for wound healing monitoring. J. Semicond. 2019, 40, 111607. [Google Scholar] [CrossRef]
- Vishinkin, R.; Haick, H. Nanoscale sensor technologies for disease detection via volatolomics. Small 2015, 11, 6142–6164. [Google Scholar] [CrossRef]
- He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2019, 25, 30–36. [Google Scholar] [CrossRef]
- Ahamed, F.; Farid, F. Applying Internet of Things and Machine-Learning for Personalized Healthcare: Issues and Challenges; IEEE: Bali, Indonesia, 2018; pp. 19–21. [Google Scholar]
- Jin, X.; Liu, C.; Xu, T.; Su, L.; Zhang, X. Artificial intelligence biosensors: Challenges and prospects. Biosens. Bioelectron. 2020, 165, 112412. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.; Zhao, W.; Luo, J.; Yin, J.; Switzer, J.C.; Joseph, P.; Lu, S.; Poliks, M.; Zhong, C.-J. Flexibility characteristics of a polyethylene terephthalate chemiresistor coated with a nanoparticle thin film assembly. J. Mater. Chem. C 2014, 2, 1893–1903. [Google Scholar] [CrossRef]
- Manjakkal, L.; Szwagierczak, D.; Dahiya, R. Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Prog. Mater. Sci. 2020, 109, 100635. [Google Scholar] [CrossRef]
- Manjakkal, L.; Navaraj, W.T.; Núñez, C.G.; Dahiya, R. Graphene–graphite polyurethane composite based high-energy density flexible supercapacitors. Adv. Sci. 2019, 6, 1802251. [Google Scholar] [CrossRef] [PubMed]
- Manjakkal, L.; Nikbakhtnasrabadi, F.; Dahiya, R. Energy Autonomous Sensors for Water Quality Monitoring; IEEE: Bali, Indonesia, 2018; pp. 1–4. [Google Scholar]
- Manjakkal, L.; Núñez, C.G.; Dang, W.; Dahiya, R. Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 2018, 51, 604–612. [Google Scholar] [CrossRef]
- Ryuh, Y.-S.; Yang, G.-H.; Liu, J.; Hu, H. A school of robotic fish for mariculture monitoring in the sea coast. J. Bionic Eng. 2015, 12, 37–46. [Google Scholar] [CrossRef]
- Valada, A.; Velagapudi, P.; Kannan, B.; Tomaszewski, C.; Kantor, G.; Scerri, P. Development of a Low Cost Multi-Robot Autonomous Marine Surface Platform; Springer: Berlin/Heidelberg, Germany, 2014; pp. 643–658. [Google Scholar]
- Sheppard Jr, N.F.; Tucker, R.C.; Salehi-Had, S. Design of a conductimetric pH microsensor based on reversibly swelling hydrogels. Sens. Actuators B Chem. 1993, 10, 73–77. [Google Scholar] [CrossRef]
Materials | Method | pH Range | pH Sensitivity | Stability | Reference |
---|---|---|---|---|---|
PbO2 | Thermal method | 1.2–7.5 | 112 mV/decade | Only stable in the acid region, | Lima et al. [101] 2005 |
Over 7.5 | 88 mV/decade | Non-linear behavior of the pH response | |||
OsO2 | 2–11 | 51.2 mV/pH | were sensitive to oxidizing and reducing agents | William et al. [102] 1984 | |
TiO2 | 2–12 | 55 mV/pH | |||
PtO2 | 5–10 | 46.7 mV/pH | |||
WO3 | Magnetron sputtering | 2–12 | 41 mV/pH | High stability (over a month) | Zhang et al. [103] 2009 |
IrOx | Electrochemical | 63–82 mV/pH | The potential always stabilized in a few minutes. | Baur et al. [104] 1998 | |
IrO2 | Electrospinning | 3–12 | 67.1–70.15 mV/pH | stable in one week | Dong et al. [105] |
Type | Probe 1-a (nm) | Probe 1-b (nm) | Probe 1-c (nm) |
---|---|---|---|
λex | 597 | 663 | 599 |
λem | 688 | 697 | 694 |
pKa | 2.7 | 5.8 | 7.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, W.; Dong, Q. The Recent Advances in Bulk and Microfluidic-Based pH Sensing and Its Applications. Catalysts 2022, 12, 1124. https://doi.org/10.3390/catal12101124
Xiao W, Dong Q. The Recent Advances in Bulk and Microfluidic-Based pH Sensing and Its Applications. Catalysts. 2022; 12(10):1124. https://doi.org/10.3390/catal12101124
Chicago/Turabian StyleXiao, Weiyu, and Qiuchen Dong. 2022. "The Recent Advances in Bulk and Microfluidic-Based pH Sensing and Its Applications" Catalysts 12, no. 10: 1124. https://doi.org/10.3390/catal12101124
APA StyleXiao, W., & Dong, Q. (2022). The Recent Advances in Bulk and Microfluidic-Based pH Sensing and Its Applications. Catalysts, 12(10), 1124. https://doi.org/10.3390/catal12101124