CuS-Based Nanostructures as Catalysts for Organic Pollutants Photodegradation
Abstract
:1. Introduction
2. CuS Nanostructures with Different Morphologies as Catalysts for Organic Pollutant Photodegradation
- Cu2S spherical and irregular nanoflakes (Eg = 3.5 eV) for Cu:S = 1:0.25
- Cu2S-CuS irregular flakes with 30 nm thickness (Eg = 2.72 eV) for Cu:S = 1:0.75
- CuS irregular nanoflakes with particle sizes between 200 and 300 nm and thickness less than 30 nm (Eg = 2.01 eV) for Cu:S = 1:1.
3. CuS-Based Heterostructures as Catalysts for Organic Pollutant Photodegradation
3.1. CuS/Carbon-Based Materials Heterostructures as Catalysts for Organic Pollutant Photodegradation
3.2. CuS/Organic Semiconductor Heterostructures as Catalysts for Organic Pollutant Photodegradation
3.3. CuS/Metal Oxide Heterostructures as Catalysts for Organic Pollutant Photodegradation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MCs | microcrystals |
HT | hydrothermal |
ST | solvothermal |
SG | sol–gel |
CoPp | Co-precipitation |
MV | methyl violet |
MG | malachite green |
MO | methyl orange |
EY | eosin Y |
CR | congo red |
MoO | mordant orange |
SO | safranine orange |
AO | acridine orange |
ABRX-3B | active brilliant red X-3B |
4-CP | 4-chlorophenol |
HA | humic acid |
ASP | aspirin |
S-MCh | S-metolachlor |
PVP | polyvinylpyrrolidone |
KCC1 | Fibrous silica KAUST Catalysis Centre |
MAA | methacrylic acid |
PDI | perylene diimide |
CB | conduction band |
VB | valence band |
References
- Xu, G.; Du, M.; Zhang, J.; Li, T.; Guan, Y.; Guo, C. Facile fabrication of magnetically recyclable Fe3O4/BiVO4/CuS heterojunction photocatalyst for boosting simultaneous Cr(VI) reduction. J. Alloys Compd. 2022, 895, 162631. [Google Scholar] [CrossRef]
- Li, Z.; Menga, X.; Zhang, Z. Recent development on MoS2-based photocatalysis: A review. J. Photochem. Photobiol. C Photochem. Rev. 2018, 35, 39–55. [Google Scholar] [CrossRef]
- Jiang, N.; Du, Y.; Ji, P.; Liu, S.; He, B.; Qu, B.; Wang, J.; Suna, X. Enhanced photocatalytic activity of novel TiO2/Ag/MoS2/Ag nanocomposites for water-treatment. Ceram. Int. 2020, 46, 4889–4896. [Google Scholar] [CrossRef]
- Isac, L.; Cazan, C.; Enesca, A.; Andronic, A. Copper Sulfide Based Heterojunctions as Photocatalysts for Dyes Photodegradation. Front. Chem. 2019, 7, 694. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Graimed, B.H. Recent developments in industrial organic degradation via semiconductor heterojunctions and the parameters affecting the photocatalytic process: A review study. J. Water Process. Eng. 2022, 47, 102671. [Google Scholar] [CrossRef]
- El-Hakam, S.A.; Alshorifi, F.T.; Salama, R.S.; Gamal, S.; Abo El-Yazeed, W.S.; Ibrahim, A.A.; Ahmed, A.I. Application of nanostructured mesoporous silica/bismuth vanadate composite catalysts for the degradation of methylene blue and brilliant green. J. Mater. Res. Technol. 2022, 18, 1963–1976. [Google Scholar] [CrossRef]
- Alshorifi, F.T.; Abduliah, A.A.; Salama, R.S. Gold-selenide quantum dots supported onto cesium ferrite nanocomposites for the efficient degradation of rhodamine B. Helyon 2022, 8, E09652. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, C.; Tsai, H.; Shaya, J.; Lu, C. Photocatalytic degradation of thiobencarb by a visible light-driven MoS2 photocatalyst. Sep. Purif. Technol. 2018, 197, 147–155. [Google Scholar] [CrossRef]
- Prabhakar Vattikuti, S.V.; Shim, J. Synthesis, characterization and photocatalytic performance of chemically exfoliated MoS2. IOP Conf. Ser. Mater. Sci. Eng. 2018, 317, 012025. [Google Scholar] [CrossRef]
- Sivaranjani, P.R.; Janani, B.; Thomas, A.M.; Raju, L.L.; Khan, S.S. Recent development in MoS2-based nano-photocatalyst for the degradation of pharmaceutically active compounds. J. Clean. Prod. 2022, 352, 131506. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Yu, S.; Wen, X.; Wu, D. Highly efficient solar-light-driven photocatalytic degradation of pollutants in petroleum refinery wastewater on hierarchically-structured copper sulfide (CuS) hollow nanocatalysts. Sep. Purif. Technol. 2022, 284, 120254. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Barba, D.; Palma, V. Zinc Sulfide Prepared through ZnO Sulfuration: Characterization and Photocatalytic Activity. Chem. Eng. Trans. 2019, 74, 1159–1164. [Google Scholar] [CrossRef]
- Ikram, M.; Khan, M.I.; Raza, A.; Imran, M.; Ul-Hamid, A.; Ali, S. Outstanding performance of silver-decorated MoS2 nanopetals used as nanocatalyst for synthetic dye degradation. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 124, 114126. [Google Scholar] [CrossRef]
- El-Hout, S.I.; El-Sheikh, S.M.; Gaber, A.; Shawky, A.; Ahmed, A.I. Highly efficient sunlight-driven photocatalytic degradation of malachite green dye over reduced graphene oxide-supported CuS nanoparticles. J. Alloys Compd. 2020, 849, 156573. [Google Scholar] [CrossRef]
- Sabbah, A.; Shown, I.; Qorbani, M.; Fu, F.-Y.; Lin, T.-Y.; Wu, H.-L.; Chung, P.-W.; Wu, C.-Y.; Santiago, S.R.M.; Shen, J.-L.; et al. Boosting photocatalytic CO2 reduction in a ZnS/ZnIn2S4 heterostructure through strain-induced direct Z-scheme and a mechanistic study of molecular CO2 interaction thereon. Nano Energy 2022, 93, 106809. [Google Scholar] [CrossRef]
- He, R.-M.; Yang, Y.-L.; Chen, H.-J.; Liu, J.-J.; Sun, Y.-M.; Guo, W.-N.; Li, D.-H.; Hou, X.-J.; Suo, G.-Q.; Ye, X.-H.; et al. In situ controllable growth of Cu7S4 nanosheets on copper mesh for catalysis: The synergistic effect of photocatalytic Fenton-like process. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128651. [Google Scholar] [CrossRef]
- Jiang, G.; Zhu, B.; Sun, J.; Liu, F.; Wang, Y.; Zhao, C. Enhanced activity of ZnS (111) by N/Cu co-doping: Accelerated degradation of organic pollutants under visible light. J. Environ. Sci. 2023, 125, 244–257. [Google Scholar] [CrossRef]
- Mouchaal, Y.; Enesca, A.; Mihoreanu, C.; Khelil, A.; Duta, A. Tuning the opto-electrical properties of SnO2 thin films by Ag+1 and In+3 co-doping. Mater. Sci. Eng. B 2015, 199, 22–29. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Z.; Wang, Y.; Xu, M.; Zhao, W.; Yan, J.; Chen, C. Facile synthesis of nano-MoS2 and its visible light photocatalytic property. Mater. Res. Bull. 2017, 87, 119–122. [Google Scholar] [CrossRef]
- Dudita, M.; Bogatu, C.; Enesca, A.; Duta, A. The influence of the additives composition and concentration on the properties of SnOx thin films used in photocatalysis. Mater. Lett. 2011, 65, 2185–2189. [Google Scholar] [CrossRef]
- Hamida, A.A.; Al-Maiyaly, B.K.H. Synthesis and characterization of Cu2S:Al thin films for solar cell applications. Chalcogenide Lett. 2022, 19, 579–590. [Google Scholar] [CrossRef]
- Wong, A.B.; Brittman, S.; Yu, Y.; Dasgupta, N.P.; Yang, P. Core-Shell CdS-Cu₂S Nanorod Array Solar Cells. Nano Lett. 2015, 15, 4096–4101. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Chen, Q.; Zhou, L.; Huang, M.; Lu, J.; Zhong, X.; Fan, H.; Ou, Y. Cu1.8S@CuS composite material improved the photoelectric efficiency of cadmium-series QDSSCs. Opt. Mater. 2020, 108, 110172. [Google Scholar] [CrossRef]
- Peng, M.; Ma, L.-L.; Zhang, Y.-G.; Tan, M.; Yu, Y. Controllable synthesis of self-assembled Cu2S nanostructures through a template-free polyol process for the degradation of organic pollutant under visible light. Mater. Res. Bull. 2009, 44, 1834–1841. [Google Scholar] [CrossRef]
- Enesca, A.; Isac, L. Tuned S-Scheme Cu2S_TiO2_WO3 Heterostructure Photocatalyst toward S-Metolachlor (S-MCh) Herbicide Removal. Materials 2021, 14, 2231. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Z.; Yan, L.; Jiang, S.; Zhu, N.; Li, J.; Li, W.; Yu, S. Fast synthesis of CuS and Cu9S5 microcrystal using subcritical and supercritical methanol and their application in photocatalytic degradation of dye in water. J. Supercrit. Fluids. 2017, 123, 11–17. [Google Scholar] [CrossRef]
- Isac, L.; Nicoara, L.; Panait, R.; Enesca, A.; Perniu, D.; Duta, A. Alumina matrix with controlled morphology for colored spectrally selective coatings. Environ. Eng. Manag. J. 2017, 16, 715–724. [Google Scholar] [CrossRef]
- Nemade, K.R.; Waghuley, S.A. Band gap engineering of CuS nanoparticles for artificial photosynthesis. Mater. Sci. Semicond. Process. 2015, 39, 781–785. [Google Scholar] [CrossRef]
- Shamraiz, U.; Hussain, R.A.; Badshah, A. Fabrication and applications of copper sulfide (CuS) nanostructures. J. Solid State Chem. 2016, 238, 25–40. [Google Scholar] [CrossRef]
- Mohamed, E.F.; Dob, T.-O. Synthesis of New Hollow Nanocomposite Photocatalysts: Sunlight Applications for Removal of Gaseous Organic Pollutants. J. Taiwan Inst. Chem. Eng. 2020, 111, 181–190. [Google Scholar] [CrossRef]
- Borthakur, P.; Boruah, P.K.; Das, M.R. Facile synthesis of CuS nanoparticles on two-dimensional nanosheets as efficient artificial nanozyme for detection of Ibuprofen in water. J. Environ. Chem. Eng. 2021, 9, 104635. [Google Scholar] [CrossRef]
- Arshad, M.; Wang, Z.; Nasir, J.A.; Amador, E.; Jin, M.; Li, H.; Chen, Z.; Rehman, Z.; Chen, W. Single source precursor synthesized CuS nanoparticles for NIR phototherapy of cancer and photodegradation of organic carcinogen. J. Photochem. Photobiol. B Biol. 2021, 214, 112084. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Singh, K. Investigation of crystalographic, morphological and photocatalytic behaviour of Ag doped CuS nanostructures. Mater. Today Proc. 2022, 60, 1090–1098. [Google Scholar] [CrossRef]
- Goel, S.; Chen, F.; Cai, W. Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics. Small 2014, 10, 631–645. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Chen, Z.; Meng, X. CuS and Cu2S as Cathode Materials for Lithium Batteries: A Review. ChemElectroChem 2019, 6, 28243. [Google Scholar] [CrossRef]
- Majumdar, D. Recent progress in copper sulfide based nanomaterials for high energy supercapacitor applications. J. Electroanal. Chem. 2021, 880, 114825. [Google Scholar] [CrossRef]
- Yu, B.; Meng, F.; Zhou, T.; Fan, A.; Khan, M.W.; Wu, H.; Liu, X. Construction of hollow TiO2/CuS nanoboxes for boosting full-spectrum driven photocatalytic hydrogen evolution and environmental remediation. Ceram. Int. 2021, 47, 8849–8858. [Google Scholar] [CrossRef]
- Mutalik, C.; Okoro, G.; Krisnawati, D.I.; Jazidie, A.; Rahmawati, E.Q.; Rahayu, D.; Hsu, W.-T.; Kuo, T.-R. Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial activities. J. Colloid Interface Sci. 2022, 607, 1825–1835. [Google Scholar] [CrossRef]
- Ding, H.; Han, D.; Hana, Y.; Liang, Y.; Liu, X.; Li, Z.; Zhu, S.; Wu, S. Visible light responsive CuS/protonated g-C3N4 heterostructure for rapid sterilization. J. Hazard. Mater. 2020, 393, 122423. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Y.; Mo, S.; Kim, J.; Guo, D.; Ju, J.; Yu, J.; Liu, M. Constructing a highly efficient CuS/Cu9S5 heterojunction with boosted interfacial charge transfer for near-infrared photocatalytic disinfection. Chem. Eng. J. 2022, 431, 134287. [Google Scholar] [CrossRef]
- Agboola, P.O.; Haider, S.; Shakir, I. Copper sulfide and their hybrids with carbon nanotubes for photocatalysis and antibacterial studies. Ceram. Int. 2022, 48, 10136–10143. [Google Scholar] [CrossRef]
- Chang, C.-J.; Lin, Y.-G.; Chen, J.; Huang, C.-Y.; Hsieh, S.-C.; Wu, S.-Y. Ionic liquid/surfactant-hydrothermal synthesis of dendritic PbS@CuS core-shell photocatalysts with improved photocatalytic performance. Appl. Surf. Sci. 2021, 546, 149106. [Google Scholar] [CrossRef]
- Alhaddad, M.; Shawky, A. CuS assembled rGO heterojunctions for superior photooxidation of atrazine under visible light. J. Mol. Liq. 2020, 318, 114377. [Google Scholar] [CrossRef]
- Enesca, A.; Duta, A. Tailoring WO3 thin layers using spray pyrolysis technique. Phys. Status Solidi C 2008, 5, 3499–3502. [Google Scholar] [CrossRef]
- Morales-García, A.; Soares, A.L., Jr.; Dos Santos, E.C.; de Abreu, H.A.; Duarte, H.A. First-Principles Calculations and Electron Density Topological Analysis of Covellite (CuS). J. Phys. Chem. A 2014, 118, 5823–5831. [Google Scholar] [CrossRef] [PubMed]
- Sudhaik, A.; Raizada, P.; Rangabhashiyam, S.; Singh, A.; Nguyen, V.-H.; Le, Q.V.; Khan, A.A.P.; Hu, C.; Huang, C.-W.; Ahamad, T.; et al. Copper sulfides based photocatalysts for degradation of environmental pollution hazards: A review on the recent catalyst design concepts and future perspectives. Surf. Interfaces 2022, 33, 102182. [Google Scholar] [CrossRef]
- Deng, J.; Zhao, Z.-Y. Effects of non-stoichiometry on electronic structure of CuxSy compounds studied by first-principle calculations. Mater. Res. Express 2019, 6, 105513. [Google Scholar] [CrossRef]
- Kalanur, S.S.; Seo, H. Tuning plasmonic properties of CuS thin films via valence band filling. RSC Adv. 2017, 7, 11118–11122. [Google Scholar] [CrossRef]
- Yooa, J.-H.; Ji, M.; Kim, J.H.; Ryu, C.-H.; Lee, Y.-I. Facile synthesis of hierarchical CuS microspheres with high visible-light driven photocatalytic activity. J. Photochem. Photobiol. A Chem. 2020, 401, 112782. [Google Scholar] [CrossRef]
- Iqbal, T.; Ashraf, M.; Afsheen, S.; Masood, A.; Qureshi, M.T.; Obediat, S.T.; Hamed, M.F.; Othman, M.S. Copper sulfide (CuS) doped with carbon quantum dots (CQD) as an efficient photocatalyst. Opt. Mater. 2022, 125, 112116. [Google Scholar] [CrossRef]
- Li, Y.-H.; Wang, Z. Green synthesis of multifunctional copper sulfide for efficient adsorption and photocatalysis. Chem. Zvesti. 2019, 73, 2297–2308. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Li, Q. Facile synthesis of CuS nanostructured flowers and their visible light photocatalytic properties. Appl. Phys. A 2017, 123, 196. [Google Scholar] [CrossRef]
- Tanveer, M.; Cao, C.; Ali, Z.; Aslam, I.; Idrees, F.; Khan, W.S.; But, F.K.; Tahir, M.; Mahmood, N. Template free synthesis of CuS nanosheet-based hierarchical microspheres: An efficient natural light driven photocatalyst. CrystEngComm 2014, 16, 5290–5300. [Google Scholar] [CrossRef]
- Ain, N.; Rehman, Z.; Aamir, A.; Khan, Y.; Rehman, M.; Lin, D.-J. Catalytic and photocatalytic efficacy of hexagonal CuS nanoplates derived from copper(II) dithiocarbamate. Mater. Chem. Phys. 2020, 242, 1224078. [Google Scholar] [CrossRef]
- Nancucheo, A.; Segura, A.; Hernandez, P.; Hernandez-Montelongo, J.; Pesenti, H.; Arranz, A.; Benito, N.; Romero-Saez, M.; Contreras, B.; Díaz, V.; et al. Covellite nanoparticles with high photocatalytic activity bioproduced by using H2S generated from a sulfidogenic bioreactor. J. Environ. Chem. Eng. 2022, 10, 107409. [Google Scholar] [CrossRef]
- Jiang, J.; Jiang, Q.; Deng, R.; Xie, X.; Meng, J. Controllable preparation, formation mechanism and photocatalytic performance of copper base sulfide nanoparticles. Mater. Chem. Phys. 2020, 254, 123504. [Google Scholar] [CrossRef]
- Adhikari, S.; Sarkar, D.; Madras, G. Hierarchical Design of CuS Architectures for Visible Light Photocatalysis of 4-Chlorophenol. ACS Omega 2017, 2, 4009–4021. [Google Scholar] [CrossRef]
- Bhatt, V.; Kumar, M.; Yun, J.-H. Unraveling the photoconduction characteristics of single-step synthesized CuS and Cu9S5 micro-flowers. J. Alloys Compd. 2021, 891, 161940. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, P.; Chang, Z.; Wang, X. Hydrothermal synthesis of nanostructured CuS for broadband efficient optical absorption and high-performance photo-thermal conversion. Sol. Energy Mater. Sol. Cells 2018, 185, 456–463. [Google Scholar] [CrossRef]
- Yan, X.; Michael, E.; Komarneni, S.; Brownson, J.R.; Yan, Z.-F. Microwave- and conventional-hydrothermal synthesis of CuS, SnS and ZnS: Optical properties. Ceram. Int. 2013, 39, 4757–4763. [Google Scholar] [CrossRef]
- Ayodhya, D.; Venkatesham, M.; Kumari, A.S.; Reddy, G.B.; Ramakrishna, D.; Veerabhadram, G. Photocatalytic degradation of dye pollutants under solar, visible and UV lights using green synthesised CuS nanoparticles. J. Exp. Nanosci. 2016, 11, 418–432. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Hu, Y.; Jin, G.; Jiang, B.; Huang, Y. Photothermal-conversion-enhanced photocatalytic activity of flower-like CuS superparticles under solar light irradiation. Sol. Energy 2018, 170, 586–593. [Google Scholar] [CrossRef]
- Saranya, M.; Ramachandran, R.; Samuel, E.J.; Jeong, S.K.; Grace, A.N. Enhanced visible light photocatalytic reduction of organic pollutant and electrochemical properties of CuS catalyst. Powder Technol. 2014, 252, 25–32. [Google Scholar] [CrossRef]
- Iqbal, S.; Shaid, N.A.; Sajid, M.M.; Javed, Y.; Fakhar-e-Alam, M.; Mahmood, A.; Ahmad, G.; Afzal, A.M.; Hussain, S.Z.; Ali, F.; et al. Extensive evaluation of changes in structural, chemical and thermal properties of copper sulfide nanoparticles at different calcination temperature. J. Cryst. Growth 2020, 547, 125823. [Google Scholar] [CrossRef]
- Pejjai, B.; Reddivari, M.; Kotte, T.R.R. Phase controllable synthesis of CuS nanoparticles by chemical co-precipitation method: Effect of copper precursors on the properties of CuS. Mater. Chem. Phys. 2020, 239, 122030. [Google Scholar] [CrossRef]
- Andronic, L.; Isac, L.; Cazan, C.; Enesca, A. Simultaneous Adsorption and Photocatalysis Processes Based on Ternary TiO2–CuxS–Fly Ash Hetero-Structures. Appl. Sci. 2020, 10, 8070. [Google Scholar] [CrossRef]
- Li, S.; Ge, Z.-G.; Zhang, Z.-P.; Yao, Y.; Wang, H.-C.; Yang, J.; Li, Y.; Gao, G.; Lin, Y.-H. Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity. Appl. Surf. Sci. 2016, 384, 272–278. [Google Scholar] [CrossRef]
- Balaz, M.; Dutkov, E.; Bujnakova, Z.; Tothova, E.; Kostova, N.G.; Karakirova, Y.; Briancin, J.; Kanuchov, M. Mechanochemistry of copper sulfides: Characterization, surface oxidation and photocatalytic activity. J. Alloys Compd. 2018, 746, 576–582. [Google Scholar] [CrossRef]
- Shamraiz, U.; Badshah, A.; Hussain, R.A.; Nadeem, M.A.; Sab, S. Surfactant free fabrication of copper sulphide (CuS–Cu2S) nanoparticles from single source precursor for photocatalytic applications. J. Saudi Chem. Soc. 2017, 21, 390–398. [Google Scholar] [CrossRef]
- Cruz, J.S.; Hernández, S.A.M.; Delgado, F.P.; Angel, O.Z.; Pérez, R.C.; Delgado, G.T. Optical and Electrical Properties of Thin Films of CuS Nanodisks Ensembles Annealed in a Vacuum and Their Photocatalytic Activity. Int. J. Photoenergy 2013, 2013, 178017. [Google Scholar] [CrossRef] [Green Version]
- Siddique, F.; Rafiq, M.A.; Afsar, M.F.; Hasan, M.M.; Chaudhry, M.M. Enhancement of degradation of mordant orange, safranin-O and acridine orange by CuS nanoparticles in the presence of H2O2 in dark and in ambient light. J. Mater. Sci. Mater. Electron. 2018, 29, 19180–19191. [Google Scholar] [CrossRef]
- Hu, X.-S.; Shen, Y.; Xu, L.-H.; Wang, L.-M.; Xing, Y.-J. Preparation of flower-like CuS by solvothermal method and its photodegradation and UV protection. J. Alloys Compd. 2016, 674, 289–294. [Google Scholar] [CrossRef]
- Nabi, G.; Tanveer, M.; Tahir, M.B.; Kiran, M.; Rafique, M.; Khalid, N.R.; Alzaid, M.; Fatima, N.; Nawaz, T. Mixed solvent based surface modification of CuS nanostructures for an excellent photocatalytic application. Inorg. Chem. Commun. 2020, 121, 108205. [Google Scholar] [CrossRef]
- Chai, Z.; Pan, X.; Cui, F.; Ma, Q.; Zhang, J.; Liu, M.; Chen, Y.; Li, L.; Cui, T. Synthesis of 3D hierarchical CuS architectures consisting of 1D nanotubes for efficient photocatalysts. Mater. Lett. 2020, 275, 128168. [Google Scholar] [CrossRef]
- Qin, N.; Wei, W.; Huang, C.; Mi, L. An efficient strategy for the fabrication of CuS as a highly excellent and recyclable photocatalyst for the degradation of organic dyes. Catalysts 2020, 10, 40. [Google Scholar] [CrossRef]
- Mohammadi, N.; Allahresani, A.; Naghizadeh, A. Enhanced photo-catalytic degradation of natural organic matters (NOMs) with a novel fibrous silica-copper sulfide nanocomposite (KCC1-CuS). J. Mol. Struct. 2022, 1249, 131624. [Google Scholar] [CrossRef]
- Kaushik, B.; Yadav, S.; Rana, P.; Solanki, K.; Rawat, D.; Sharma, R.K. Precisely engineered type II ZnO-CuS based heterostructure: A visible light driven photocatalyst for efficient mineralization of organic dyes. Appl. Surf. Sci. 2022, 590, 153053. [Google Scholar] [CrossRef]
- Vyas, Y.; Chundawat, P.; Dharmendra, D.; Jain, A.; Punjabi, P.B.; Ameta, C. Biosynthesis and characterization of carbon quantum Dots@CuS composite using water hyacinth leaves and its usage in photocatalytic dilapidation of Brilliant Green dye. Mater. Chem. Phys. 2022, 281, 125921. [Google Scholar] [CrossRef]
- Yan, L.; Wang, W.; Zhao, Q.; Zhu, Z.; Liu, B.; Hua, C. Construction of perylene diimide/CuS supramolecular heterojunction for the highly efficient visible light-driven environmental remediation. J. Colloid Interface Sci. 2022, 606, 898–911. [Google Scholar] [CrossRef]
- Iqbal, T.; Ashraf, M.; Masood, A. Simple synthesis of WO3 based activated carbon co-doped CuS composites for photocatalytic applications. Inorg. Chem. Commun. 2022, 139, 109322. [Google Scholar] [CrossRef]
- Baneto, M.; Enesca, A.; Mihoreanu, C.; Lare, Y.; Jondo, K.; Napo, K.; Duta, A. Effects of the growth temperature on the properties of spray deposited CuInS2 thin films for photovoltaic applications. Ceram. Int. 2015, 41, 4742–4749. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, Y.; Chi, y.; Yu, H.; Li, Y.; Jiang, T.; Wei, X.; Shi, J. Self-assembly, optical and electrical properties of perylene diimide dyes bearing unsymmetrical substituents at bay position. Sci. Rep. 2018, 8, 8208. [Google Scholar] [CrossRef]
- Tuckute, S.; Varnagiris, S.; Urbonavicius, M.; Lelis, M.; Sakalauskaite, S. Tailoring of TiO2 film crystal texture for higher photocatalysis efficiency. Appl. Surf. Sci. 2019, 489, 576–583. [Google Scholar] [CrossRef]
- Aslam, M.; Qamar, M.T.; Ali, S.; Rehman, A.U.; Soomro, M.T.; Ahmed, I.; Ismail, I.M.I.; Hameed, A. Evaluation of SnO2 for sunlight photocatalytic decontamination of Water. J. Environ. Manag. 2018, 217, 805–814. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Q.; Tian, S.; Zhao, X. Exposed facet dependent stability of ZnO micro/nano crystals as a photocatalyst. Appl. Surf. Sci. 2019, 470, 807–816. [Google Scholar] [CrossRef]
Catalyst | Synthesis Method | Pollutant Conc. (mg/L) | Catalyst Dosage (g/L) | Light Source | η* (%) | t (min) | Ref. |
---|---|---|---|---|---|---|---|
CuS NPs | ST | MB (500) | 0.5–2 | UV (90 W Xe lamp) Vis (160 W Hg -W lamp) | 98.26 100 | 30 | [72] |
CuS NPs | ST | MB (6.4) CR (13.9) RhB (9.6) EY (13) | 0.03 | UV (12 W G8 T5 Philips) Vis (160 W Hg lamp) Solar | 70.79, 85.13, 90.29 75.47, 63.21, 60.35 50.04, 60.37, 69.23 79.49, 56.02, 91.97 | 240 | [61] |
CuS NPs | Aqueous solution route | MB (20) MB + H2O2 | 0.1 | Vis (150 W Xe arc lamp) | 39 92 | 90 | [52] |
CuS NPs | Sulfate reducing bacteria (SRB) | MB (16) RhB (24) + H2O2 | 0.3–0.5 | Vis (600 W halogen lamp) | 94 61.2 | 5.5 25 | [55] |
CuS NPs | PVP assisted ST | MB (400) + H2O2 | 0.1 | Solar | 96.5 | 48 | [53] |
CuS 3D NSs | ST | MB (20) + H2O2 | 0.2 | Vis (10 kW/m2, CEL HXF 300) | 90 | 30 | [62] |
CuS NPs | Solution aerosol thermolysis | MB (12.8) RhB (9.6) MO (9.8) + H2O2 | 1 | Vis (300 W Xe lamp) | 98 98 50 | 15 50 45 | [27] |
CuS MCs | Subcritical & supercritical methanol reaction | MB (5.8) | 0.2 | Vis (25 W day-light lamp) | 85.4 | 300 | [26] |
CuS NPs | CoPp | RhB (20) RhB + H2O2 | 0.05 | Vis (150 W Xe lamp) | 99 99 | 120 60 | [51] |
CuS QDs | Mechano-chemical | RhB (10) RhB + H2O2 | 0.4 | Vis (150 W Xe lamp) | 60 95 | 30 | [67] |
CuS NPs | Mixed solvent route | RhB (50) + H2O2 | 0.2 | Vis (1000 W halide lamp) | 94 | 60 | [73] |
3D CuS NSs | ST & self-assembly | RhB (50) + H2O2 | 0.2 | Vis (150 W Xe lamp) | 99 | 45 | [74] |
3D CuS NSs | One-step in situ heating sulfuration route | MB (10) RhB (10) MB/RhB + H2O2 | 1.25 | Vis (300 W xenon lamp) | 99 99 99 | 25 | [75] |
CuS NPs | One pot synthesis from Cu(II) dithio-carbamate | CR (100) | 0.5 | Solar | 100 | 40 | [54] |
CuS NPs | Solid-state reaction | MoO (60) SO (60) AO (60) | 0.1 | Vis (500 W Hg lamp) | 51 22 45 | 180 | [71] |
3D CuS NSs | HT | 4-CP (100) 4-CP + H2O2 | 1 | Vis (49.700 lux) | 62 83 | 300 | [57] |
CuS NPs Cu2S NPs CuS-Cu2S NPS | One-step HT (tuning Cu:S molar ratios) | RhB (10) + H2O2 | 0.2 | Vis (250 W cold Xe lamp) | 96 87 92 | 5 | [56] |
CuS-Cu2S NPs | Chemical reduction | MB (3.2) MG (3.65) MO (3.27) MV (3.6) RhB (4.79) | 0.4 | Solar | 61.95 90.25 9.4 85.03 70.16 | 100 40 180 60 80 | [69] |
CuS/KCC1 | ST | HA (2) | 0.1 | UV-C (18 W lamp) | 89.5 | 90 | [76] |
CuS/ZnO | HT | MB (9.6) TB (16.2) | 0.7 | Vis (52 W renewable household Philips LEDs) | 93 87.5 | 16 18 | [77] |
Cu1-xAgxS (0.0 ≤ x ≤ 0.1) | CoPp | MB (6) | 0.25 | Vis (indigenous light reactor) | 75.4 | 90 | [33] |
CuS/rGO | CoPp | MG (10) | 0.1 | Solar | 99.2 | 90 | [14] |
CuS/CQDs | Carbonization of water hyacinth weed + SG (CuS) | BG (50) | 0.09 | Vis (200 W tungsten lamp) | 96 | 90 | [78] |
CuS/CQDs | Carbonization of peanut shells + HT (CuS) | PAN (20) | 0.2 | Vis (400 W Hg lamp) | 96.5 | 150 | [50] |
CuS/PDI | Two-step self-assembly | TC (50) | 0.6 | Vis (300 W Xe lamp) | 90 | 120 | [79] |
CuS/rGO | SG | ATZ (50) | 0.8 | Vis (300 W Xe lamp) | 100 | 20 | [43] |
CuS/WO3-AC | HT | ASP (10) | - | Vis (400 W metal halide lamp) | 97.6 | 150 | [80] |
Catalyst | Morphology | Eg (eV) | SBET (m2/g) | Photodegradation | Ref. | |||
---|---|---|---|---|---|---|---|---|
Dye | η* (%) | t (min) | ||||||
Chemical Formula and Structure | λmax (nm) | |||||||
CuS NPs | spherical (10–12 nm) | 3.46 | 9.36 | BG, C27H33N2.HO4S | 625 | 38 | 90 | [78] |
CuS/CQDs | compact loading of carbon dots (4–8 nm) over CuS NPs | 2.96 | 15.42 | 91.8 | ||||
CuS NPs | nano-flower-like structure | - | 850.5 | PAN, C8H9NO2 | 243 | 76.9 | 100 | [50] |
CuS/CQDs | small nano-flowers with nano-petals | - | 96.5 | |||||
CuS NPs | urchin-like structure and some irregular hexagonal NPs | 2.08 | 20.25 | MG, C23H25ClN2 | 621 | 92 | 90 | [14] |
CuS/rGO | uniform CuS NPs distributed on rGO nanosheets | 1.9 | 34.4 | 99.2 | ||||
CuS NPs | hexagonal | 2.07 | 130 | ATZ, C8H14ClN5 | 222.5 | 60 | 50 | [43] |
CuS/rGO | separated hexagons of CuS assembled on rGO | 1.76 | 155 | 100 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isac, L.; Cazan, C.; Andronic, L.; Enesca, A. CuS-Based Nanostructures as Catalysts for Organic Pollutants Photodegradation. Catalysts 2022, 12, 1135. https://doi.org/10.3390/catal12101135
Isac L, Cazan C, Andronic L, Enesca A. CuS-Based Nanostructures as Catalysts for Organic Pollutants Photodegradation. Catalysts. 2022; 12(10):1135. https://doi.org/10.3390/catal12101135
Chicago/Turabian StyleIsac, Luminita, Cristina Cazan, Luminita Andronic, and Alexandru Enesca. 2022. "CuS-Based Nanostructures as Catalysts for Organic Pollutants Photodegradation" Catalysts 12, no. 10: 1135. https://doi.org/10.3390/catal12101135
APA StyleIsac, L., Cazan, C., Andronic, L., & Enesca, A. (2022). CuS-Based Nanostructures as Catalysts for Organic Pollutants Photodegradation. Catalysts, 12(10), 1135. https://doi.org/10.3390/catal12101135