Copper-on-Magnetically Activated Carbon-Catalyzed Azide-Alkyne Click Cycloaddition in Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of the Catalyst
2.2. Catalytic Studies
2.3. Comparison of the Cu-Fe3O4-PAC Catalyst with Other Heterogeneous Catalysts
2.4. Mechanistic Insight
3. Materials and Methods
3.1. Materials and Instrumental Facilities
3.2. Computational Details
3.3. Preparation of the Powdered Activated Carbon (PAC)
3.4. Preparation of the Magnetically Powdered Activated Carbon (Fe3O4-PAC)
3.5. Synthesis of the Cu-Fe3O4-PAC Catalyst
3.6. General Procedure for the Synthesis of 1,2,3-triazole Derivatives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huisgen, R. 1,3-Dipolar Cycloaddition Chemistry; Wiley: New York, NY, USA, 1984; Volume 1, pp. 55–92. [Google Scholar]
- Lazrek, H.B.; Taourirte, M.; Oulih, T.; Barascut, J.L.; Imbach, J.L.; Pannecouque, C.; Witrouw, M.; De Clercq, E. Synthesis and anti-HIV activity of new modified 1,2,3-triazole Acyclonucleosides. Nucleosides Nucleotides Nucleic Acids 2001, 20, 1949–1960. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Seela, F. Stepwise “click” chemistry for the template independent construction of a broad variety of cross-linked oligonucleotides: Influence of linker length, position, and linking number on DNA duplex stability. J. Org. Chem. 2011, 76, 5584–5597. [Google Scholar] [CrossRef] [PubMed]
- Holla, B.S.; Mahalinga, M.; Karthikeyan, M.S.; Poojary, B.; Akberali, P.M.; Kumari, N.S. Synthesis, characterization and antimicrobial activity of some substituted 1,2,3-triazoles. Eur. J. Med. Chem. 2005, 40, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Aly MR, E.S.; Saad, H.A.; Mohamed, M.A.M. Click reaction based synthesis, antimicrobial, and cytotoxic activities of new 1,2,3-triazoles. Bioorg. Med. Chem. Lett. 2015, 25, 2824–2830. [Google Scholar] [CrossRef]
- Kharb, R.; Shahar Yar, M.; Sharma, C.P. New Insights into Chemistry and Anti-Infective Potential of Triazole Scaffold. Curr. Med. Chem. 2011, 18, 3265–3297. [Google Scholar] [CrossRef]
- Duan, T.; Fan, K.; Fu, Y.; Zhong, C.; Chen, X.; Peng, T.; Qin, J. Triphenylamine-based organic dyes containing a 1,2,3-triazole bridge for dye-sensitized solar cells via a ‘Click’ reaction. Dyes Pigm. 2012, 94, 28–33. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Rees, C.W.; Scriven, E.F.V. Comprehensive Heterocyclic Chemsitry II, 2nd ed.; Pergamon Press: Oxford, UK, 1996; pp. 259–321. [Google Scholar]
- Dorlars, A.; Schellhammer, C.-W.; Schroeder, J. Heterocycles as Structural Units in New Optical Brighteners. Angew. Chem. Int. Ed. Eng. 1975, 14, 665–679. [Google Scholar] [CrossRef]
- Hrimla, M.; Bahsis, L.; Laamari, M.R.; Julve, M.; Stiriba, S.E. An Overview on the Performance of 1,2,3-Triazole Derivatives as Corrosion Inhibitors for Metal Surfaces. Int. J. Mol. Sci. 2022, 23, 16. [Google Scholar] [CrossRef]
- Elazhary, I.; Boutouil, A.; Ben El Ayouchia, H.; Laamari, M.R.; El Haddad, M.; Anane, H.; Stiriba, S.-E. Anti-Corrosive Properties of (1-benzyl-1H-1,2,3-triazol-4-yl) Methanol on Mild Steel Corrosion in Hydrochloric Acid Solution: Experimental and Theoretical Evidences. Prot. Met. Phys. Chem. Surf. 2019, 55, 166–178. [Google Scholar] [CrossRef]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. [Google Scholar] [CrossRef]
- Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper (I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67, 3057–3064. [Google Scholar] [CrossRef] [PubMed]
- Meldal, M.; Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 2008, 108, 2952–3015. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, S.; Pawar, G.G.; Kumar, S.V.; Jiang, Y.; Ma, D. Selected Copper-Based Reactions for C-N, C-O, C-S, and C-C Bond Formation. Angew. Chem. Int. Ed. 2017, 56, 16136–16179. [Google Scholar] [CrossRef]
- Aflak, N.; Ben El Ayouchia, H.; Bahsis, L.; Anane, H.; Julve, M.; Stiriba, S.E. Recent Advances in Copper-Based Solid Heterogeneous Catalysts for Azide-Alkyne Cycloaddition Reactions. Int. J. Mol. Sci. 2022, 23, 2383. [Google Scholar] [CrossRef] [PubMed]
- Aflak, N.; Ben El Ayouchia, H.; Bahsis, L.; Anane, H.; Laamari, R.; Pascual-Alvarez, A.; Armentano, D.; Stiriba, S.-E. Facile immobilization of copper (I) acetate on silica: A recyclable and reusable heterogeneous catalyst for azide-alkyne clickable cycloaddition reactions. Polyhedron 2019, 170, 630–638. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, X.; Gong, S.; Xie, J. MOF-Derived Cu@NC Catalyst for 1,3-Dipolar Cycloaddition Reaction. Nanomaterials 2022, 12, 1070. [Google Scholar] [CrossRef]
- Chassaing, S.; Benneteau, V.; Pale, P. When CuAAC ‘Click Chemistry’ goes heterogeneous. Catal. Sci. Technol. 2015, 6, 923–957. [Google Scholar] [CrossRef]
- Lipshutz, B.H.; Taft, B.R. Heterogeneous copper-in-charcoal-catalyzed click chemistry. Angew. Chem. Int. Ed. 2006, 45, 8235–8238. [Google Scholar] [CrossRef]
- Vafaeezadeh, M.; Schaumlöffel, J.; Lösch, A.; De Cuyper, A.; Thiel, W.R. Dinuclear Copper Complex Immobilized on a Janus-Type Material as an Interfacial Heterogeneous Catalyst for Green Synthesis. ACS Appl. Mater. Interfaces 2021, 13, 33091–33101. [Google Scholar] [CrossRef]
- Park, I.S.; Kwon, M.S.; Kim, Y.; Lee, J.S.; Park, J. Heterogeneous copper catalyst for the cycloaddition of azides and alkynes without additives under ambient conditions. Org. Lett. 2008, 10, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Aflak, N.; Ben El Ayouchia, H.; Bahsis, L.; El Mouchtari, E.M.; Julve, M.; Rafqah, S.; Anane, H.; Stiriba, S.-E. Sustainable Construction of Heterocyclic 1,2,3-Triazoles by Strict Click [3+2] Cycloaddition Reactions Between Azides and Alkynes on Copper/Carbon in Water. Front. Chem. 2019, 7, 81. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Chen, H.; Tang, Z.; Jiang, Y. Supported CuBr on graphene oxide/Fe3O4: A highly efficient, magnetically separable catalyst for the multi-gram scale synthesis of 1,2,3-triazoles. RSC Adv. 2014, 4, 9830–9837. [Google Scholar] [CrossRef]
- Lim, C.W.; Lee, I.S. Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today 2010, 5, 412–434. [Google Scholar] [CrossRef]
- Chetia, M.; Ali, A.A.; Bhuyan, D.; Saikia, L.; Sarma, D. Magnetically recoverable chitosan-stabilised copper-iron oxide nanocomposite material as an efficient heterogeneous catalyst for azide-alkyne cycloaddition reactions. New J. Chem. 2015, 39, 5902–5907. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Zheng, D.F.; Mo, Z.Y.; Dong, R.J.; Qiu, X.Q. Magnetic lignin-based carbon nanoparticles and the adsorption for removal of methyl orange. Colloids Surf. A Physicochem. Eng. Asp. 2018, 559, 226–234. [Google Scholar] [CrossRef]
- Wu, L.K.; Li, Y.Y.; Cao, H.Z.; Zheng, G.Q. Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol. J. Hazard. Mater. 2015, 299, 520–528. [Google Scholar] [CrossRef]
- Ai, L.; Zhang, C.; Liao, F.; Wang, Y.; Li, M.; Meng, L.; Jiang, J. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nano tube: Kinetics, isotherm and mechanism analysis. J. Hazard. Mater. 2011, 198, 282–290. [Google Scholar] [CrossRef]
- Mohan, D.; Kumar, S.; Srivastava, A. Fluoride removal from ground water using magnetic and nonmagnetic corn stover biochars. Ecol. Eng. 2014, 73, 798–808. [Google Scholar] [CrossRef]
- Samim, M.; Kaushik, N.K.; Maitra, A. Effect of size of copper nanoparticles on its catalytic behaviour in Ullman reaction. Bull. Mater. Sci. 2007, 30, 535–540. [Google Scholar] [CrossRef]
- Ghouma, I.; Jeguirim, M.; Sager, U.; Limousy, L.; Bennici, S.; Däuber, E.; Asbach, C.; Ligotski, R.; Schmidt, F.; Ouederni, A. The potential of activated carbon made of agro-industrial residues in NOx immissions abatement. Energies 2017, 10, 1508. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.J.K.; Ahmaruzzaman, M. A facile synthesis of Fe3O4-charcoal composite for the sorption of a hazardous dye from aquatic environment. J. Environ. Manag. 2015, 163, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.J.K.; Ahmaruzzaman, M.; Reza, R.A. Lignocellulosic-derived modified agricultural waste: Development, characterisation and implementation in sequestering pyridine from aqueous solutions. J. Colloid Interface Sci. 2014, 428, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 9–10. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Webley, P.A.; Zhao, D. Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture. J. Mater. Chem. 2012, 22, 11379–11389. [Google Scholar] [CrossRef]
- Hu, X.; Jia, L.; Cheng, J.; Sun, Z. Magnetic ordered mesoporous carbon materials for adsorption of minocycline from aqueous solution: Preparation, characterization and adsorption mechanism. J. Hazard. Mater. 2019, 362, 1–8. [Google Scholar] [CrossRef]
- Zhang, Q.; Meng, G.; Wu, J.; Li, D.; Liu, Z. Study on enhanced photocatalytic activity of magnetically recoverable Fe3O4@C@TiO2 nanocomposites with core–shell nanostructure. Opt. Mater. 2015, 46, 52–58. [Google Scholar] [CrossRef]
- de Oliveira Pereira, L.; Sales, I.M.; Zampiere, L.P.; Vieira, S.S.; do Rosário Guimarães, I.; Magalhaes, F. Preparation of magnetic photocatalysts from TiO2, activated carbon and iron nitrate for environmental remediation. J. Photochem. Photobiol. A Chem. 2019, 382, 111907. [Google Scholar] [CrossRef]
- López-Ruiz, H.; de la Cerda-Pedro, J.E.; Rojas-Lima, S.; Pérez-Pérez, I.; Rodríguez-Sánchez, B.V.; Santillan, R.; Coreno, O. Cuprous oxide on charcoal-catalyzed ligand-free, synthesis of 1,4-disubstituted 1,2,3-triazoles via click chemistry. Arkivoc 2013, 3, 139–164. [Google Scholar]
- Hudson, R.; Li, C.-J.; Moores, A. Magnetic copper-iron nanoparticles as simple heterogeneous catalysts for the azide–alkyne click reaction in water. Green Chem. 2012, 14, 622–624. [Google Scholar] [CrossRef]
- Katayama, T.; Kamata, K.; Yamaguchi, K.; Mizuno, N. A Supported Copper Hydroxide as an Efficient, Ligand-free, and Heterogeneous Precatalyst for 1,3-Dipolar Cycloadditions of Organic Azides to Terminal Alkynes. ChemSusChem 2009, 2, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Ben El Ayouchia, H.; Bahsis, L.; Anane, H.; Domingo, L.R.; Stiriba, S.-E. Understanding the mechanism and regioselectivity of the copper(I) catalyzed [2+3] cycloaddition reaction between azide and alkyne: A systematic DFT stud. RSC Adv. 2018, 8, 7670–7678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader, R.W.F. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Tian, L.; Feiwu, C. Multiwfn: A multifunctional wave-function analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar]
- Sirohiwal, A.; Hathwar, V.R.; Dey, D.; Chopra, D. Investigation of chemical bonding in in situ cryocrystallized organometallic liquids. ChemPhysChem 2017, 18, 2859–2863. [Google Scholar] [CrossRef]
- Peressi, M.; Fornari, M.; Gironcoli, S.D.E.; Santis, L.D.E.; Baldereschi, A. Coordination defects in amorphous silicon and hydrogenated amorphous silicon: A characterization from first-principles calculations. Philos. Mag. B 2000, 80, 515–521. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. et al. Gaussian 09; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Erdogdu, Y.; Manimaran, D.; Güllüoǧlu, M.T.; Amalanathan, M.; Hubert Joe, I.; Yurdakul, S. FT-IR, FT-Raman, NMR spectra and DFT simulations of 4-(4-fluoro-phenyl)-1H-imidazole. Opt. Spectrosc. 2013, 114, 525–536. [Google Scholar] [CrossRef]
- Wang, D.; Li, N.; Zhao, M.; Shi, W.; Ma, C.; Chen, B. Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of Cu(PPh3)2NO3 complex. Green Chem. 2010, 12, 2120–2123. [Google Scholar]
- Siyang, H.X.; Liu, H.L.; Wu, X.Y.; Liu, P.N. Highly efficient click reaction on water catalyzed by a ruthenium complex. RSC Adv. 2015, 5, 4693–4697. [Google Scholar]
- Sun, H.B.; Li, D.; Xie, W.; Deng, X. Catalytic Cyclization of 2,3-Dibromopropionates with Benzyl Azides to Afford 1-Benzyl-1,2,3-triazole-4-carboxylate: The Use of a Nontoxic Bismuth Catalyst. Heterocycles 2016, 92, 423–430. [Google Scholar]
- Bragg, S.E. Cyclopentadienone Conversions to Terephthalates and Cycloadditions of Alkynes and Azides. Master’s Thesis, Wright State University, Dayton, OH, USA, 2011. [Google Scholar]
Material | Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
PAC | 5535.55 | 3.70 | 2.69 |
Fe3O4-PAC | 4748.18 | 3.20 | 2.69 |
Cu-Fe3O4-PAC | 3800.95 | 2.69 | 2.83 |
Entry | Catalyst | Amount of Catalyst and Copper Loading (mg; mol%) | Solvent | Time (h) | Yield (%) b |
---|---|---|---|---|---|
1 | - | - | H2O | 48 | Trace |
2 | PAC c | 30; 0 | H2O | 48 | Trace |
3 | Fe3O4 c | 30; 0 | H2O | 24 | Trace |
4 | Fe3O4-PAC c | 30; 0 | H2O | 48 | Trace |
5 | Cu-Fe3O4-PAC | 70; 3.2 | H2O | 22 | 99 |
6 | Cu-Fe3O4-PAC | 50; 2.2 | H2O | 22 | 99 |
7 | Cu-Fe3O4-PAC | 30; 1.3 | H2O | 22 | 64 |
8 | Cu-Fe3O4-PAC | 50; 2.2 | EtOH | 22 | 57 |
9 | Cu-Fe3O4-PAC | 50; 2.2 | CH3CN | 27 | 98 |
10 | Cu-Fe3O4-PAC | 50; 2.2 | Hexane | 23 | 62 |
11 | Cu-Fe3O4-PAC | 50; 2.2 | THF | 46 | 55 |
12 | Cu-Fe3O4-PAC | 50; 2.2 | Dichloromethane | 24 | 30 |
13 | Cu-Fe3O4-PAC | 50; 2.2 | EtOH/H2O (1:1 v/v) | 22 | 95 |
14 | Cu-Fe3O4-PAC | 50; 2.2 | CH3CN/H2O (1:1 v/v) | 22 | 93 |
Entry | Catalyst a (Copper Loading) | Solvent/T (°C) | Base | Time | Yield (%) | TON/TOF | Ref. |
---|---|---|---|---|---|---|---|
1 | Cu-Fe3O4-PAC (2.2 mol%) | H2O/r.t. | - | 22 h | 99% | 45/2.04 h−1 | This work |
2 | Cu-CANS (1 mol%) | H2O/r.t. | - | 6 h | 98% | 190/31.66 h−1 | [24] |
3 | Cu/C (10 mol%) | Dioxane/60 °C | Et3N | 10 min | 99% | - | [21] |
4 | Cu2O/C (5 mol%) | i-PrOH:H2O/r.t. | Et3N | 2 h | 82% | 1957/13.5 h−1 | [41] |
5 | Cu@FeNP (5 mol%) | H2O/r.t. | - | 12 h | 93% | - | [42] |
6 | CS-Fe3O4-Cu (1.54 mol%) | DCM/r.t. | - | 12 h | 92% | 59.7/4.98 h−1 | [27] |
7 | Cu(OH)x/Al2O3 (1.5 mol%) | Toluene/60 °C | - | 30 min | 95% | - | [43] |
Complex | E(2) Energy (kcal/mol) | |
---|---|---|
BD*(C—C)→LP*(Cu) | LP(Nazide)→LP*(Cu) | |
4 | 4.34 | - |
5 | 5.86 | 12.95 |
6 | 2.69 | 30.72 |
Complex | Bonding Interaction | ρ(r) | ∇2(ρ(r)) | G(r) | ν(r) | −G(r)/ν(r) | η(r) b | Eint a |
---|---|---|---|---|---|---|---|---|
4 | Cu—Calkyne | 0.98 | −0.92 | 0.11 | −0.13 | 0.84 | 0.22 | −40.78 |
5 | Cu—Nazide | 0.66 | −0.64 | 0.95 | −0.98 | 0.96 | 0.97 | −307.48 |
6 | Cu—Nazide | 0.87 | −0.87 | 0.13 | −0.14 | 0.92 | 0.11 | −43.92 |
7 | Cu—Ctriazole | 0.11 | −0.11 | 0.13 | −0.16 | 0.81 | 0.26 | −50.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aflak, N.; El Mouchtari, E.M.; Ben El Ayouchia, H.; Anane, H.; Rafqah, S.; Julve, M.; Stiriba, S.-E. Copper-on-Magnetically Activated Carbon-Catalyzed Azide-Alkyne Click Cycloaddition in Water. Catalysts 2022, 12, 1244. https://doi.org/10.3390/catal12101244
Aflak N, El Mouchtari EM, Ben El Ayouchia H, Anane H, Rafqah S, Julve M, Stiriba S-E. Copper-on-Magnetically Activated Carbon-Catalyzed Azide-Alkyne Click Cycloaddition in Water. Catalysts. 2022; 12(10):1244. https://doi.org/10.3390/catal12101244
Chicago/Turabian StyleAflak, Noura, El Mountassir El Mouchtari, Hicham Ben El Ayouchia, Hafid Anane, Salah Rafqah, Miguel Julve, and Salah-Eddine Stiriba. 2022. "Copper-on-Magnetically Activated Carbon-Catalyzed Azide-Alkyne Click Cycloaddition in Water" Catalysts 12, no. 10: 1244. https://doi.org/10.3390/catal12101244
APA StyleAflak, N., El Mouchtari, E. M., Ben El Ayouchia, H., Anane, H., Rafqah, S., Julve, M., & Stiriba, S. -E. (2022). Copper-on-Magnetically Activated Carbon-Catalyzed Azide-Alkyne Click Cycloaddition in Water. Catalysts, 12(10), 1244. https://doi.org/10.3390/catal12101244