Reduced Graphene Oxide–Metal Oxide Nanocomposites (ZrO2 and Y2O3): Fabrication and Characterization for the Photocatalytic Degradation of Picric Acid
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of Graphene Oxide (GO)
3.2. Synthesis of rGO-ZrO2 Nanocomposite
3.3. Synthesis of rGO-Y2O3 Nanocomposite
3.4. Photodegradation Activity
3.5. Physical Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vassilenko, E.; Watkins, M.; Chastain, S.; Mertens, J.; Posacka, A.M.; Patankar, S.; Ross, P.S. Domestic laundry and microfiber pollution: Exploring fiber shedding from consumer apparel textiles. PLoS ONE 2021, 16, e0250346. [Google Scholar] [CrossRef]
- Roscam, A.M. Plastic Soup: An Atlas of Ocean Pollution; Island Press: Washington, DC, USA; Covelo, CA, USA; London, OH, USA, 2019; ISBN 10: 1642830089. [Google Scholar]
- Waring, R.H.; Harrisa, R.M.; Mitchell, S.C. Plastic contamination of the food chain: A threat to human health? Maturitas 2018, 115, 64–68. [Google Scholar] [CrossRef]
- Black, O.; Smith, S.C.; Roper, C. Advances and limitations in the determination and assessment of gunshot residue in the environment. Ecotoxicol. Environ. Saf. 2021, 208, 111689. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Nemr, A.E. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Hansen, É.; Monteiro de Aquim, P.; Hansen, A.W.; Cardoso, J.K.; Ziulkoski, A.L.; Gutterres, M. Impact of post-tanning chemicals on the pollution load of tannery wastewater. J. Environ. Manag. 2020, 269, 110787. [Google Scholar] [CrossRef]
- Vasseghian, Y.; Khataee, A.; Dragoi, E.-N.; Moradi, M.; Nabavifard, S.; Conti, G.O.; Khaneghah, A.M. Pollutants degradation and power generation by photocatalytic fuel cells: A comprehensive review. Arab. J. Chem. 2020, 13, 8458–8480. [Google Scholar] [CrossRef]
- Eom, S.-Y.; Choi, J.; Bae, S.; Lim, J.-A.; Kim, G.-B.; Yu, S.-D.; Kim, Y.; Lim, H.-S.; Son, B.-S.; Paek, D.; et al. Health effects of environmental pollution in population living near industrial complex areas in Korea. Environ. Health Toxicol. 2018, 33, e2018004. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K. Thermal Destruction of Solid Wastes. ASME J. Energy Resour. Technol. 1996, 118, 187–192. [Google Scholar] [CrossRef]
- Tornevi, A.; Bergstedt, O.; Forsberg, B. Precipitation Effects on Microbial Pollution in a River: Lag Structures and Seasonal Effect Modification. PLoS ONE 2014, 9, e98546. [Google Scholar] [CrossRef]
- Dharupaneedi, S.P.; Nataraj, S.K.; Nadagouda, M.; Reddy, K.R.; Shukla, S.S.; Aminabhavi, T.M. Membrane-based separation of potential emerging pollutants. Sep. Purif. Technol. 2019, 210, 850–866. [Google Scholar] [CrossRef] [PubMed]
- Hussain, C.M.; Paulraj, M.S.; Nuzhat, S. Chapter 2 Source reduction, waste minimization, and cleaner technologies. In Source Reduction and Waste Minimization; Elsevier: Amsterdam, The Netherlands, 2022; pp. 23–59. ISBN 9780128243206. [Google Scholar]
- Moosavi, S.; Lai, C.W.; Gan, S.; Zamiri, G.; Pivehzhani, O.A.; Johan, M.R. Application of Efficient Magnetic Particles and Activated Carbon for Dye Removal from Wastewater. ACS Omega 2020, 5, 20684–20697. [Google Scholar] [CrossRef]
- Majid, Z.; Razak, A.A.; Noori, W.A.H. Modification of Zeolite by Magnetic Nanoparticles for Organic Dye Removal. Arab. J. Sci. Eng. 2019, 44, 5457–5474. [Google Scholar] [CrossRef]
- Watwe, V.S.; Kulkarni, S.D.; Kulkarni, P.S. Cr (VI)-Mediated Homogeneous Fenton Oxidation for Decolorization of Methylene Blue Dye: Sludge Free and Pertinent to a Wide pH Range. ACS Omega 2021, 6, 27288–27296. [Google Scholar] [CrossRef]
- Sarkar, S.; Ponce, N.T.; Banerjee, A.; Bandopadhyay, R.; Rajendran, S.; Lichtfouse, E. Green polymeric nanomaterials for the photocatalytic degradation of dyes: A review. Environ. Chem. Lett. 2020, 18, 1569–1580. [Google Scholar] [CrossRef]
- Casimiro, F.M.; Costa, C.A.E.; Botelho, C.M.; Barreiro, M.F.; Rodrigue, A.E. Kinetics of Oxidative Degradation of Lignin-Based Phenolic Compounds in Batch Reactor. Ind. Eng. Chem. Res. 2019, 58, 16442–16449. [Google Scholar] [CrossRef] [Green Version]
- Murugadoss, G.; Thiruppathi, K.; Venkatesh, N.; Hazra, S.; Mohankumar, A.; Thiruppathi, G.; Kumar, M.R.; Sundararaj, P.; Rajabathar, J.R.; Sakthivel, P. Construction of novel quaternary nanocomposite and its synergistic effect towards superior photocatalytic and antibacterial application. J. Environ. Chem. Eng. 2022, 10, 106961. [Google Scholar] [CrossRef]
- Padmanaban, A.; Murugadoss, G.; Venkatesh, N.; Hazra, S.; Kumar, M.R.; Tamilselvi, R.; Sakthivel, P. Electrochemical determination of harmful catechol and rapid decolorization of textile dyes using ceria and tin doped ZnO nanoparticles. J. Environ. Chem. Eng. 2021, 9, 105976. [Google Scholar] [CrossRef]
- Murugadoss, G.; Kumar, D.D.; Kumar, M.R.; Venkatesh, N.; Sakthivel, P. Silver Decorated CeO2 Nanoparticles for Rapid Photocatalytic Degradation of Textile Rose Bengal Dye. Sci. Rep. 2021, 11, 1080. [Google Scholar] [CrossRef]
- Khattab, E.-S.R. Band Structure Engineering and Optical Properties of Pristine and Doped Monoclinic Zirconia (m-ZrO2): Density Functional Theory Theoretical Prospective. ACS Omega 2021, 6, 30061–30068. [Google Scholar] [CrossRef]
- Polisetti, S.; Deshpande, P.A.; Madras, G. Photocatalytic Activity of Combustion Synthesized ZrO2 and ZrO2–TiO2 Mixed Oxides. Ind. Eng. Chem. Res. 2011, 50, 12915–12924. [Google Scholar] [CrossRef]
- Basahel, S.N.; Ali, T.T.; Mokhtar, M.; Narasimharao, K. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. 2015, 10, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taguchi, M.; Takami, S.; Adschiri, T.; Nakane, T.; Satoa, K.; Naka, T. Simple and rapid synthesis of ZrO2 nanoparticles from Zr(OEt)4 and Zr(OH)4 using a hydrothermal method. CrystEngComm 2012, 14, 2117–2123. [Google Scholar] [CrossRef]
- Dwivedi, R.; Maurya, A.; Verma, A.; Prasad, R.; Bartwal, K.S. Microwave assisted sol–gel synthesis of tetragonal zirconia nanoparticles. J. Alloys Compds. 2011, 509, 6848–6851. [Google Scholar] [CrossRef]
- Cesano, F.; Boffa, V.; Coelho, F.E.B.; Magnacca, G. Chapter 24-Graphene and graphene-oxide for enhancing the photocatalytic properties of materials. In Materials Science in Photocatalysis; Elsevier: Amsterdam, The Netherlands, 2021; pp. 385–396. ISBN 9780128218594. [Google Scholar]
- Wang, W.C.; Badylevich, M.; Afanas’ev, V.V.; Stesmans, A.; Adelmann, C.; Elshocht, S.V.; Kittl, J.A.; Lukosius, M.; Walczyk, C.; Wenger, C. Band alignment and electron traps in Y2O3 layers on (100)Si. Appl. Phys. Lett. 2009, 95, 132903. [Google Scholar] [CrossRef]
- Zhao, J.; Yao, B.; He, Q.; Zhang, T. Preparation and properties of visible light responsive Y3+ doped Bi5Nb3O15 photocatalysts for Ornidazole decomposition. J. Hazard Mater. 2012, 229–230, 151–158. [Google Scholar] [CrossRef]
- Su, T.-M.; Liu, Z.-L.; Liang, Y.; Qin, Z.-Z.; Liu, J.; Huang, Y.-Q. Preparation of PbYO composite photocatalysts for degradation of methyl orange under visible-light irradiation. Catal. Commun. 2012, 18, 93–97. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Y.; Ye, C.; Zhang, P. Preparation and characterization of doped sol–gel zirconia films. Ceram. Int. 2002, 28, 349–354. [Google Scholar] [CrossRef]
- Jiang, X. Preparation of hollow yttrium-doped TiO2 microspheres with enhanced visible-light photocatalytic activity. Mater. Res. Express 2019, 6, 065510. [Google Scholar] [CrossRef]
- Jirícková, A.; Jankovsky, O.; Sofer, Z.; Sedmidubský, D. Synthesis and Applications of Graphene Oxide. Materials 2022, 15, 920. [Google Scholar] [CrossRef]
- Gad, S.E. Picric Acid. In Encyclopedia of Toxicology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 438–440. ISBN 9780123694003. [Google Scholar]
- Ruano, D.; Pabón, B.M.; Azenha, C.; Mateos-Pedrero, C.; Mendes, A.; Pérez-Dieste, V.; Concepción, P. Influence of the ZrO2 Crystalline Phases on the Nature of Active Sites in PdCu/ZrO2 Catalysts for the Methanol Steam Reforming Reaction-An In Situ Spectroscopic Study. Catalysts 2020, 10, 1005. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Marques-Hueso, J.; Yan, X. Improving Optical Temperature Sensing Performance of Er3+ Doped Y2O3 Microtubes via Co-doping and Controlling Excitation Power. Sci. Rep. 2017, 7, 758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vadivel, S.; Bappi Paul, D.; Maruthamani, D.; Kumaravel, M.; Vijayaraghavan, T.; Hariganesh, S.; Pothu, R. Synthesis of yttrium doped BiOF/RGO composite for visible light: Photocatalytic applications. Mater. Sci. Energy Technol. 2019, 2, 112–116. [Google Scholar] [CrossRef]
- Li, J.; Wu, Q.; Wang, X.; Chai, Z.; Shi, W.; Hou, J.; Hayat, T.; Alsaedi, A.; Wang, X. Heteroaggregation behavior of graphene oxide on Zr-based metal–organic frameworks in aqueous solutions: A combined experimental and theoretical study. J. Mater. Chem. A 2017, 5, 20398–20406. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, S.; Peretyagin, P.; Smirnov, A.; Solis, W.; Diaz, L.A.; Fernandez, A.; Torrecillas, R. Effect of graphene addition on the mechanical and electrical properties of Al2O3-SiCw ceramics. J. Eur. Ceram. Soc. 2017, 37, 2473–2479. [Google Scholar] [CrossRef]
- Jafarnejad, G.; Rabbani, M. Fabrication of ZrO2/ceramic nanocomposite for water purification. In Proceedings of the 4th International Electronic Conference on Water Sciences, Online, 13–29 November 2019; MDPI: Basel, Switzerland, 2019. [Google Scholar]
- Huang, X.; Zhou, H.; Yue, X.; Ran, S.; Zhu, J. Novel Magnetic Fe3O4/α-FeOOH Nanocomposites and Their Enhanced Mechanism for Tetracycline Hydrochloride Removal in the Visible Photo-Fenton Process. ACS Omega 2021, 6, 9095–9103. [Google Scholar] [CrossRef]
- Lama, G.; Meijide, J.; Sanromán, A.; Pazos, M. Heterogeneous Advanced Oxidation Processes: Current Approaches for Wastewater Treatment. Catalysts 2022, 12, 344. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.; Ding, L.; Yang, Y.; Zhang, T. MIL-88/PVB Nanofiber as Recyclable Heterogeneous Catalyst for Photocatalytic and Fenton Process under Visible Light Irradiation. Chem. Phys. Lett. 2020, 749, 137431. [Google Scholar]
- Usharani, B.; Manivannan, V. Enhanced Photocatalytic Activity of Reduced Graphene Oxide-TiO2 Nanocomposite for Picric Acid Degradation. Inorg. Chem. Commun. 2022, 142, 109660. [Google Scholar] [CrossRef]
- Mahender Rao, A.; Suresh, D.; Sribalan, R.; Sandhya, G. Nano-CeO2-Loaded Chitosan-Bocglycine Zinc Complex for the Photocatalytic Degradation of Picric Acid by the Combination of Fenton’s Reagent. Appl. Phys. A Mater. Sci. Process. 2022, 128, 742. [Google Scholar] [CrossRef]
- Usharani, B.; Manivannan, V.; Shanmugasundaram, P. Efficient Degradation of Picric Acid Using RGO-MnO2 Hybrid Nanocomposite under Different Light Conditions. J. Phys. Conf. Ser. 2021, 2070, 012089. [Google Scholar] [CrossRef]
- Anusha, B.; Anbuchezhiyan, M.; Sribalan, R.; Srinivasan alias Arunsankar, N. Synergistic Effect of TiO2-RGO Nanocomposites with Fenton’s Reagent for the Enhanced Photocatalytic Degradation of Nitrophenols in Solar Light. Appl. Phys. A. 2022, 128, 411. [Google Scholar] [CrossRef]
- Anusha, B.; Anbuchezhiyan, M.; Sribalan, R. An Efficient Photocatalytic Degradation of Nitrophenols Using TiO2 as a Heterogeneous Photo-Fenton Catalyst. React. Kinet. Mech. Catal. 2021, 134, 501–515. [Google Scholar] [CrossRef]
S. No. | Catalysts | Pollutant Name | Source | Duration | Efficiency(%) | Ref. |
---|---|---|---|---|---|---|
1 | rGO-TiO2 | Picric acid | Uv-light | 24 min | 100% | [44] |
2 | rGO-TiO2 | Picric acid | Visible light | 18 min | 100% | [44] |
3 | rGO-TiO2 | Picric acid | Sun light | 18 min | 100% | [44] |
4 | CeO2 Nanocompisite | Picric acid | Uv-light | 45 min | 100% | [45] |
5 | CeO2 Nanocompisite | Picric acid | Visible light | 40 min | 100% | [45] |
6 | CeO2 Nanocompisite | Picric acid | Sun light | 35 min | 100% | [45] |
7 | rGO | Picric acid | Sun light | 60 min | 99% | [46] |
8 | MnO2 | Picric acid | Sun light | 40 min | 99% | [46] |
9 | rGO-MnO2 | Picric acid | Sunlight | 30 min | 100% | [46] |
10 | rGO-TiO2(5%) | Picric acid | Sunlight | 18 min | 100% | [47] |
11 | rGO-TiO2(10%) | Picric acid | Sunlight | 15 min | 100% | [47] |
12 | TiO2 | Picric acid | Visible light | 27 min | 100% | [48] |
13 | rGO-Y2O3 | Picric acid | UV light | 30 min | 100% | Present study |
14 | rGO-Y2O3 | Picric acid | Sunlight | 35 min | 100% | Present study |
15 | rGO-ZrO2 | Picric acid | UV light | 16 min | 100% | Present study |
16 | rGO-ZrO2 | Picric acid | Sunlight | 15 min | 100% | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usharani, B.; Murugadoss, G.; Rajesh Kumar, M.; Gouse Peera, S.; Manivannan, V. Reduced Graphene Oxide–Metal Oxide Nanocomposites (ZrO2 and Y2O3): Fabrication and Characterization for the Photocatalytic Degradation of Picric Acid. Catalysts 2022, 12, 1249. https://doi.org/10.3390/catal12101249
Usharani B, Murugadoss G, Rajesh Kumar M, Gouse Peera S, Manivannan V. Reduced Graphene Oxide–Metal Oxide Nanocomposites (ZrO2 and Y2O3): Fabrication and Characterization for the Photocatalytic Degradation of Picric Acid. Catalysts. 2022; 12(10):1249. https://doi.org/10.3390/catal12101249
Chicago/Turabian StyleUsharani, Balasubramanian, Govindhasamy Murugadoss, Manavalan Rajesh Kumar, Shaik Gouse Peera, and Varadharajan Manivannan. 2022. "Reduced Graphene Oxide–Metal Oxide Nanocomposites (ZrO2 and Y2O3): Fabrication and Characterization for the Photocatalytic Degradation of Picric Acid" Catalysts 12, no. 10: 1249. https://doi.org/10.3390/catal12101249
APA StyleUsharani, B., Murugadoss, G., Rajesh Kumar, M., Gouse Peera, S., & Manivannan, V. (2022). Reduced Graphene Oxide–Metal Oxide Nanocomposites (ZrO2 and Y2O3): Fabrication and Characterization for the Photocatalytic Degradation of Picric Acid. Catalysts, 12(10), 1249. https://doi.org/10.3390/catal12101249