Quantitative Analysis of the Research Development Status and Trends of Tannery Wastewater Treatment Technology
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Collection
2.2. Methods
3. Results and Discussion
3.1. Analysis of Basic Characteristics of Publications
3.1.1. Trend Analysis of Publications
3.1.2. Analysis of Disciplines and Journals
3.1.3. Analysis of Countries/Regions
3.1.4. Analysis of Institutions
3.1.5. Analysis of Authors
3.2. Analysis of Research Hotspots
3.2.1. Analysis of Keyword Network
3.2.2. Analysis of Keyword Clustering
3.3. Analysis of Research Trends
3.3.1. Research Frontiers
3.3.2. Research Trends
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lofrano, G.; Meriç, S.; Zengin, G.E.; Orhon, D. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Sci. Total Environ. 2013, 461–462, 265–281. [Google Scholar] [CrossRef]
- Nur-E-Alam, M.; Mia, M.A.S.; Ahmad, F.; Rahman, M.M. An overview of chromium removal techniques from tannery effluent. Appl. Water Sci. 2020, 10, 205. [Google Scholar] [CrossRef]
- Mohammed, K.; Sahu, O. Recovery of chromium from tannery industry waste water by membrane separation technology: Health and engineering aspects. Sci. Afr. 2019, 4, e00096. [Google Scholar] [CrossRef]
- Saxena, G.; Chandra, R.; Bharagava, R.N. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants. In Reviews of Environmental Contamination and Toxicology Volume 240; de Voogt, P., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 31–69. [Google Scholar]
- Cooman, K.; Gajardo, M.; Nieto, J.; Bornhardt, C.; Vidal, G. Tannery wastewater characterization and toxicity effects on Daphnia spp. Environ. Toxicol. 2003, 18, 45–51. [Google Scholar] [CrossRef]
- Durai, G.; Rajasimman, M. Biological Treatment of Tannery Wastewater—A Review. J. Environ. Sci. Technol. 2011, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Gutterres, M.; Benvenuti, J.; Fontocra, J.T. Characterisation of raw wastewater from tanneries. J. Soc. Leather Technol. Chem. 2015, 99, 280–287. [Google Scholar]
- Zhou, H.; Tan, Z.; Li, X. Assessment of wastewater pollution in pig leather industry in China. Water Environ. J. 2012, 26, 521–529. [Google Scholar] [CrossRef]
- Pathe, P.P.; Suresh Kumar, M.; Kharwade; Kaul, S.N. Common Effluent Treatment Plant (CEPT) for Wastewater Management from a Cluster of Small Scale Tanneries. Environ. Technol. 2004, 25, 555–563. [Google Scholar] [CrossRef]
- Chandra, R.; Bharagava, R.N.; Kapley, A.; Purohit, H.J. Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant (CETP) during the degradation and detoxification of tannery wastewater. Bioresour. Technol. 2011, 102, 2333–2341. [Google Scholar] [CrossRef]
- Verma, T.; Ramteke, P.W.; Garg, S.K. Quality assessment of treated tannery wastewater with special emphasis on pathogenic E. coli detection through serotyping. Environ. Monit. Assess. 2008, 145, 243–249. [Google Scholar] [CrossRef]
- Bharagava, R.N.; Saxena, G.; Mulla, S.I.; Patel, D.K. Characterization and Identification of Recalcitrant Organic Pollutants (ROPs) in Tannery Wastewater and Its Phytotoxicity Evaluation for Environmental Safety. Arch. Environ. Contam. Toxicol. 2018, 75, 259–272. [Google Scholar] [CrossRef]
- Tigini, V.; Giansanti, P.; Mangiavillano, A.; Pannocchia, A.; Varese, G.C. Evaluation of toxicity, genotoxicity and environmental risk of simulated textile and tannery wastewaters with a battery of biotests. Ecotoxicol. Environ. Saf. 2011, 74, 866–873. [Google Scholar] [CrossRef]
- Montalvão, M.F.; de Souza, J.M.; Guimarães, A.T.B.; de Menezes, I.P.P.; Castro, A.L.d.S.; Rodrigues, A.S.d.L.; Malafaia, G. The genotoxicity and cytotoxicity of tannery effluent in bullfrog (Lithobates catesbeianus). Chemosphere 2017, 183, 491–502. [Google Scholar] [CrossRef]
- Bouderbala, A.; Gharbi, B.Y. Hydrogeochemical characterization and groundwater quality assessment in the intensive agricultural zone of the Upper Cheliff plain, Algeria. Environ. Earth Sci. 2017, 76, 744. [Google Scholar] [CrossRef]
- Santos, M.J.; Ferreira, P.; Araújo, M.; Portugal-Pereira, J.; Lucena, A.F.P.; Schaeffer, R. Scenarios for the future Brazilian power sector based on a multi-criteria assessment. J. Clean. Prod. 2017, 167, 938–950. [Google Scholar] [CrossRef]
- Sathish, M.; Madhan, B.; Sreeram, K.J.; Raghava Rao, J.; Nair, B.U. Alternative carrier medium for sustainable leather manufacturing—A review and perspective. J. Clean. Prod. 2016, 112, 49–58. [Google Scholar] [CrossRef]
- Dettmer, A.; Cavalli, É.; Ayub, M.A.Z.; Gutterres, M. Environmentally friendly hide unhairing: Enzymatic hide processing for the replacement of sodium sulfide and delimig. J. Clean. Prod. 2013, 47, 11–18. [Google Scholar] [CrossRef]
- Maqbool, A.; Ali, S.; Rizwan, M.; Ishaque, W.; Rasool, N.; Rehman, M.Z.u.; Bashir, A.; Abid, M.; Wu, L. Management of tannery wastewater for improving growth attributes and reducing chromium uptake in spinach through citric acid application. Environ. Sci. Pollut. Res. 2018, 25, 10848–10856. [Google Scholar] [CrossRef]
- Yao, L.; Hui, L.; Yang, Z.; Chen, X.; Xiao, A. Freshwater microplastics pollution: Detecting and visualizing emerging trends based on Citespace II. Chemosphere 2020, 245, 125627. [Google Scholar] [CrossRef]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, Y.; Xue, H.; Wu, L.; Wang, Y.; Wang, C.; Gao, X.; Li, Z.; Zhang, X.; Hasan, M.; et al. Scientometric analysis and scientific trends on microplastics research. Chemosphere 2022, 304, 135337. [Google Scholar] [CrossRef]
- Tan, H.; Li, J.; He, M.; Li, J.; Zhi, D.; Qin, F.; Zhang, C. Global evolution of research on green energy and environmental technologies:A bibliometric study. J. Environ. Manag. 2021, 297, 113382. [Google Scholar] [CrossRef]
- Chen, C.; Song, M. Visualizing a field of research: A methodology of systematic scientometric reviews. PLoS ONE 2019, 14, e0223994. [Google Scholar] [CrossRef] [Green Version]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Li, K.; Rollins, J.; Yan, E. Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics 2018, 115, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Samaei, S.M.; Gato-Trinidad, S.; Altaee, A. Performance evaluation of reverse osmosis process in the post-treatment of mining wastewaters: Case study of Costerfield mining operations, Victoria, Australia. J. Water Process Eng. 2020, 34, 101116. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Libkind, A.N.; Markusova, V.A.; Libkind, I.A. Approach for Using Journal Citation Reports in Determining the Dynamics of Half-Life Indicators of Journals. Autom. Doc. Math. Linguist. 2020, 54, 174–183. [Google Scholar] [CrossRef]
- Alemu, A.; Gabbiye, N.; Lemma, B. Application of integrated local plant species and vesicular basalt rock for the treatment of chromium in tannery wastewater in a horizontal subsurface flow wetland system. J. Environ. Chem. Eng. 2020, 8, 103940. [Google Scholar] [CrossRef]
- Ates, E.; Orhon, D.; Tünay, O. Characterization of tannery wastewaters for pretreatment selected case studies. Water Sci. Technol. 1997, 36, 217–223. [Google Scholar] [CrossRef]
- Das, C.; Ramaiah, N.; Pereira, E.; Naseera, K. Efficient bioremediation of tannery wastewater by monostrains and consortium of marine Chlorella sp. and Phormidium sp. Int. J. Phytoremediation 2018, 20, 284–292. [Google Scholar] [CrossRef]
- Rezgui, S.; Ghazouani, M.; Bousselmi, L.; Akrout, H. Efficient treatment for tannery wastewater through sequential electro-Fenton and electrocoagulation processes. J. Environ. Chem. Eng. 2022, 10, 107424. [Google Scholar] [CrossRef]
- Mustapha, S.; Tijani, J.O.; Ndamitso, M.M.; Abdulkareem, S.A.; Shuaib, D.T.; Mohammed, A.K.; Sumaila, A. The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment. Sci. Rep. 2020, 10, 13068. [Google Scholar] [CrossRef]
- Song, Z.; Williams, C.J.; Edyvean, R.G.J. Sedimentation of tannery wastewater. Water Res. 2000, 34, 2171–2176. [Google Scholar] [CrossRef]
- Rengaraj, S.; Yeon, K.-H.; Moon, S.-H. Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. 2001, 87, 273–287. [Google Scholar] [CrossRef]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Goswami, S.; Mazumder, D. Comparative study between activated sludge process (ASP) and moving bed bioreactor (MBBR) for treating composite chrome tannery wastewater. Mater. Today Proc. 2016, 3, 3337–3342. [Google Scholar] [CrossRef]
- El-Sheikh, M.A.; Saleh, H.I.; Flora, J.R.; AbdEl-Ghany, M.R. Biological tannery wastewater treatment using two stage UASB reactors. Desalination 2011, 276, 253–259. [Google Scholar] [CrossRef]
- Younas, F.; Niazi, N.K.; Bibi, I.; Afzal, M.; Hussain, K.; Shahid, M.; Aslam, Z.; Bashir, S.; Hussain, M.M.; Bundschuh, J. Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. J. Hazard. Mater. 2022, 422, 126926. [Google Scholar] [CrossRef]
- Vo, T.-K.-Q.; Dang, B.-T.; Ngo, H.H.; Nguyen, T.-T.; Nguyen, V.-T.; Vo, T.-D.-H.; Ngo, T.-T.-M.; Nguyen, T.-B.; Lin, C.; Lin, K.-Y.A.; et al. Low flux sponge membrane bioreactor treating tannery wastewater. Environ. Technol. Innov. 2021, 24, 101989. [Google Scholar] [CrossRef]
- Mpofu, A.B.; Oyekola, O.O.; Welz, P.J. Anaerobic treatment of tannery wastewater in the context of a circular bioeconomy for developing countries. J. Clean. Prod. 2021, 296, 126490. [Google Scholar] [CrossRef]
- Tammaro, M.; Salluzzo, A.; Perfetto, R.; Lancia, A. A comparative evaluation of biological activated carbon and activated sludge processes for the treatment of tannery wastewater. J. Environ. Chem. Eng. 2014, 2, 1445–1455. [Google Scholar] [CrossRef]
- Munz, G.; Gualtiero, M.; Salvadori, L.; Claudia, B.; Claudio, L. Process efficiency and microbial monitoring in MBR (membrane bioreactor) and CASP (conventional activated sludge process) treatment of tannery wastewater. Bioresour. Technol. 2008, 99, 8559–8564. [Google Scholar] [CrossRef]
- Dixit, S.; Yadav, A.; Dwivedi, P.D.; Das, M. Toxic hazards of leather industry and technologies to combat threat: A review. J. Clean. Prod. 2015, 87, 39–49. [Google Scholar] [CrossRef]
- Saxena, G.; Kishor, R.; Bharagava, R.N.; Das, P.; Gupta, P.K.; Kumar, N. Chapter 18—Emerging Green Technologies for Biological Treatment of Leather Tannery Chemicals and Wastewater. In Bioremediation for Environmental Sustainability; Saxena, G., Kumar, V., Shah, M.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 435–457. [Google Scholar]
- Ramírez, S.; Torrealba, G.; Lameda-Cuicas, E.; Molina-Quintero, L.; Stefanakis, A.I.; Pire-Sierra, M.C. Investigation of pilot-scale constructed wetlands treating simulated pre-treated tannery wastewater under tropical climate. Chemosphere 2019, 234, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Calheiros, C.S.C.; Quitério, P.V.B.; Silva, G.; Crispim, L.F.C.; Brix, H.; Moura, S.C.; Castro, P.M.L. Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater. J. Environ. Manag. 2012, 95, 66–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parde, D.; Patwa, A.; Shukla, A.; Vijay, R.; Killedar, D.J.; Kumar, R. A review of constructed wetland on type, treatment and technology of wastewater. Environ. Technol. Innov. 2021, 21, 101261. [Google Scholar] [CrossRef]
- Vo, T.-D.-H.; Bui, X.-T.; Dang, B.-T.; Nguyen, T.-T.; Nguyen, V.-T.; Tran, D.P.H.; Nguyen, P.-T.; Boller, M.; Lin, K.-Y.A.; Varjani, S.; et al. Influence of organic loading rates on treatment performance of membrane bioreactor treating tannery wastewater. Environ. Technol. Innov. 2021, 24, 101810. [Google Scholar] [CrossRef]
- Luján-Facundo, M.J.; Mendoza-Roca, J.A.; Soler-Cabezas, J.L.; Bes-Piá, A.; Vincent-Vela, M.C.; Pastor-Alcañiz, L. Use of the osmotic membrane bioreactor for the management of tannery wastewater using absorption liquid waste as draw solution. Process Saf. Environ. Prot. 2019, 131, 292–299. [Google Scholar] [CrossRef]
- Munz, G.; Gori, R.; Cammilli, L.; Lubello, C. Characterization of tannery wastewater and biomass in a membrane bioreactor using respirometric analysis. Bioresour. Technol. 2008, 99, 8612–8618. [Google Scholar] [CrossRef]
- Keerthi; Suganthi, V.; Mahalakshmi, M.; Balasubramanian, N. Development of hybrid membrane bioreactor for tannery effluent treatment. Desalination 2013, 309, 231–236. [Google Scholar] [CrossRef]
- Ghorab, R.E.A.; Pugazhendi, A.; Jamal, M.T.; Jeyakumar, R.B.; Godon, J.J.; Mathew, D.K. Tannery wastewater treatment coupled with bioenergy production in upflow microbial fuel cell under saline condition. Environ. Res. 2022, 212, 113304. [Google Scholar] [CrossRef] [PubMed]
- George, J.S.; Ramos, A.; Shipley, H.J. Tanning facility wastewater treatment: Analysis of physical–chemical and reverse osmosis methods. J. Environ. Chem. Eng. 2015, 3, 969–976. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, Q.; Tang, Y.; Zhou, J.; Guo, H. Tannery wastewater treatment: Conventional and promising processes, an updated 20-year review. J. Leather Sci. Eng. 2022, 4, 10. [Google Scholar] [CrossRef]
- Korpe, S.; Rao, P.V. Application of advanced oxidation processes and cavitation techniques for treatment of tannery wastewater—A review. J. Environ. Chem. Eng. 2021, 9, 105234. [Google Scholar] [CrossRef]
- Borba, F.H.; Pellenz, L.; Bueno, F.; Inticher, J.J.; Braun, L.; Espinoza-Quiñones, F.R.; Trigueros, D.E.G.; de Pauli, A.R.; Módenes, A.N. Pollutant removal and biodegradation assessment of tannery effluent treated by conventional Fenton oxidation process. J. Environ. Chem. Eng. 2018, 6, 7070–7079. [Google Scholar] [CrossRef]
- Suman, H.; Sangal, V.K.; Vashishtha, M. Treatment of tannery industry effluent by electrochemical methods: A review. Mater. Today Proc. 2021, 47, 1438–1444. [Google Scholar] [CrossRef]
- Aber, S.; Salari, D.; Parsa, M.R. Employing the Taguchi method to obtain the optimum conditions of coagulation–flocculation process in tannery wastewater treatment. Chem. Eng. J. 2010, 162, 127–134. [Google Scholar] [CrossRef]
- Haydar, S.; Aziz, J.A. Coagulation–flocculation studies of tannery wastewater using combination of alum with cationic and anionic polymers. J. Hazard. Mater. 2009, 168, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Tolkou, A.; Zouboulis, A.; Samaras, P. PSiFAC-poly-aluminum-ferric-silicate-chloride: Synthesis and coagulation performance of a novel composite coagulant in water and wastewater treatment. In Proceedings of the 4th International Conference SWAT, Toulouse, France, 17–19 July 2013; pp. 25–27. [Google Scholar]
- Lofrano, G.; Belgiorno, V.; Gallo, M.; Raimo, A.; Meric, S. Toxicity reduction in leather tanning wastewater by improved coagulation flocculation process. Glob. NEST J. 2006, 8, 151–158. [Google Scholar]
- Gao, B.; Yue, Q.; Wang, B. Coagulation Efficiency and Residual Aluminum Content of Polyaluminum Silicate Chloride in Water Treatment. Acta Hydrochim. Et Hydrobiol. 2004, 32, 125–130. [Google Scholar] [CrossRef]
- Ayoub, G.M.; Hamzeh, A.; Semerjian, L. Post treatment of tannery wastewater using lime/bittern coagulation and activated carbon adsorption. Desalination 2011, 273, 359–365. [Google Scholar] [CrossRef]
- Puchana-Rosero, M.; Lima, E.; Mella, B.; Costa, D.; Poll, E.; Mariliz, G. A coagulation-flocculation process combined with adsorption using activated carbon obtained from sludge for dye removal from tannery wastewater. J. Chil. Chem. Soc. 2018, 63, 3867–3874. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.V.; Mary, G.P.S.; Kalyanaraman, C.; Sureshkumar, P.S.; Sri Balakameswari, K.; Suthanthararajan, R.; Ravindranath, E. Combined advanced oxidation and biological treatment of tannery effluent. Clean Technol. Environ. Policy 2012, 14, 251–256. [Google Scholar] [CrossRef]
- Sauer, T.P.; Casaril, L.; Oberziner, A.L.B.; José, H.J.; Moreira, R.d.F.P.M. Advanced oxidation processes applied to tannery wastewater containing Direct Black 38—Elimination and degradation kinetics. J. Hazard. Mater. 2006, 135, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Saravanathamizhan, R.; Perarasu, V.T.; Dhandapani, B. 28—Advanced Oxidation Process for Effluent Treatment in Textile, Pharmaceutical, and Tannery Industries. In Photocatalytic Degradation of Dyes; Shah, M., Dave, S., Das, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 719–745. [Google Scholar]
- Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef]
- Korpe, S.; Bethi, B.; Sonawane, S.H.; Jayakumar, K.V. Tannery wastewater treatment by cavitation combined with advanced oxidation process (AOP). Ultrason. Sonochemistry 2019, 59, 104723. [Google Scholar] [CrossRef] [PubMed]
- Villaseñor-Basulto, D.L.; Picos-Benítez, A.; Pacheco-Alvarez, M.; Pérez, T.; Bandala, E.R.; Peralta-Hernández, J.M. Tannery wastewater treatment using combined electrocoagulation and electro-Fenton processes. J. Environ. Chem. Eng. 2022, 10, 107290. [Google Scholar] [CrossRef]
- Costa, C.R.; Botta, C.M.R.; Espindola, E.L.G.; Olivi, P. Electrochemical treatment of tannery wastewater using DSA® electrodes. J. Hazard. Mater. 2008, 153, 616–627. [Google Scholar] [CrossRef]
- Suthanthararajan, R.; Ravindranath, E.; Chits, K.; Umamaheswari, B.; Ramesh, T.; Rajamam, S. Membrane application for recovery and reuse of water from treated tannery wastewater. Desalination 2004, 164, 151–156. [Google Scholar] [CrossRef]
- Mukherjee, D.; Kar, S.; Mandal, A.; Ghosh, S.; Majumdar, S. Immobilization of tannery industrial sludge in ceramic membrane preparation and hydrophobic surface modification for application in atrazine remediation from water. J. Eur. Ceram. Soc. 2019, 39, 3235–3246. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Roy, A.; Sarkar, S.; Ghosh, S.; Majumdar, S.; Chakraborty, S.; Mandal, S.; Mukhopadhyay, A.; Bandyopadhyay, S. Combination technology of ceramic microfiltration and reverse osmosis for tannery wastewater recovery. Water Resour. Ind. 2013, 3, 48–62. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef]
- Tamilchelvan, P.; Mohan, S. Anaerobic Digestion Treatment of Tannery Waste Water. In Proceedings of the 2013 International Conference on Current Trends in Engineering and Technology (ICCTET), Coimbatore, India, 3 July 2013; pp. 152–156. [Google Scholar]
- Szpyrkowicz, L.; Rigoni-Stern, S.; Zilio Grandi, F. Nitrification and denitrification of tannery wastewaters. Water Res. 1991, 25, 1351–1356. [Google Scholar] [CrossRef]
- Gokcay, C.F.; Yetis, U. Effect of chromium(VI) on activated sludge. Water Res. 1991, 25, 65–73. [Google Scholar] [CrossRef]
- Szpyrkowicz, L.; Naumczyk, J.; Zilio-Grandi, F. Electrochemical treatment of tannery wastewater using TiPt and Ti/Pt/Ir electrodes. Water Res. 1995, 29, 517–524. [Google Scholar] [CrossRef]
- Chmielewská-Horváthová, E.; Konečný, J.; Bošan, Z. Ammonia Removal from Tannery Wastewaters by Selective Ion Exchange on Slovak Clinoptilolite. Acta Hydrochim. Et Hydrobiol. 1992, 20, 269–272. [Google Scholar] [CrossRef]
- Kabdasli, I.; Tünay, O.; Orhon, D. The Treatability of Chromium Tannery Wastes. Water Sci. Technol. 1993, 28, 97–105. [Google Scholar] [CrossRef]
- Farabegoli, G.; Carucci, A.; Majone, M.; Rolle, E. Biological treatment of tannery wastewater in the presence of chromium. J. Environ. Manag. 2004, 71, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Calheiros, C.S.C.; Rangel, A.O.S.S.; Castro, P.M.L. Constructed Wetlands for Tannery Wastewater Treatment in Portugal: Ten Years of Experience. Int. J. Phytoremediation 2014, 16, 859–870. [Google Scholar] [CrossRef]
- Espinoza-Quiñones, F.R.; Fornari, M.M.T.; Módenes, A.N.; Palácio, S.M.; da Silva, F.G.; Szymanski, N.; Kroumov, A.D.; Trigueros, D.E.G. Pollutant removal from tannery effluent by electrocoagulation. Chem. Eng. J. 2009, 151, 59–65. [Google Scholar] [CrossRef]
- Dogruel, S.; Genceli, E.A.; Babuna, F.G.; Orhon, D. Ozonation of Nonbiodegradable Organics in Tannery Wastewater. J. Environ. Sci. Health Part A 2004, 39, 1705–1715. [Google Scholar] [CrossRef] [PubMed]
- Religa, P.; Kowalik, A.; Gierycz, P. Application of nanofiltration for chromium concentration in the tannery wastewater. J. Hazard. Mater. 2011, 186, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Calheiros, C.S.C.; Rangel, A.O.S.S.; Castro, P.M.L. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res. 2007, 41, 1790–1798. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Malaviya, P. Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecol. Eng. 2016, 91, 419–425. [Google Scholar] [CrossRef]
- Agustini, C.; da Costa, M.; Gutterres, M. Biogas production from tannery solid wastes—Scale-up and cost saving analysis. J. Clean. Prod. 2018, 187, 158–164. [Google Scholar] [CrossRef]
- Abigail, M.E.A.; Samuel, M.S.; Chidambaram, R. Hexavalent chromium biosorption studies using Penicillium griseofulvum MSR1 a novel isolate from tannery effluent site: Box–Behnken optimization, equilibrium, kinetics and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 2015, 49, 156–164. [Google Scholar] [CrossRef]
- Booramurthy, V.K.; Kasimani, R.; Subramanian, D.; Pandian, S. Production of biodiesel from tannery waste using a stable and recyclable nano-catalyst: An optimization and kinetic study. Fuel 2020, 260, 116373. [Google Scholar] [CrossRef]
- Wang, D.; Ye, Y.; Liu, H.; Ma, H.; Zhang, W. Effect of alkaline precipitation on Cr species of Cr(III)-bearing complexes typically used in the tannery industry. Chemosphere 2018, 193, 42–49. [Google Scholar] [CrossRef]
- Tripathi, P.K.; Rao, N.N.; Chauhan, C.; Pophali, G.R.; Kashyap, S.M.; Lokhande, S.K.; Gan, L. Treatment of refractory nano-filtration reject from a tannery using Pd-catalyzed wet air oxidation. J. Hazard. Mater. 2013, 261, 63–71. [Google Scholar] [CrossRef]
- Zeng, J.; Gou, M.; Tang, Y.-Q.; Li, G.-Y.; Sun, Z.-Y.; Kida, K. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. Bioresour. Technol. 2016, 218, 859–866. [Google Scholar] [CrossRef]
- Srithar, K.; Mani, A. Open fibre reinforced plastic (FRP) flat plate collector (FPC) and spray network systems for augmenting the evaporation rate of tannery effluent (soak liquor). Sol. Energy 2007, 81, 1492–1500. [Google Scholar] [CrossRef]
- Sahu, S.K.; Meshram, P.; Pandey, B.D.; Kumar, V.; Mankhand, T.R. Removal of chromium(III) by cation exchange resin, Indion 790 for tannery waste treatment. Hydrometallurgy 2009, 99, 170–174. [Google Scholar] [CrossRef]
Serial Number | Journal | Papers | Proportion |
---|---|---|---|
1 | Desalination and Water Treatment | 48 | 4.90% |
2 | Water Science & Technology | 46 | 4.70% |
3 | Journal of the American Leather Chemists Association | 27 | 2.76% |
4 | Journal of Environmental Chemical Engineering | 26 | 2.66% |
5 | Desalination | 24 | 2.45% |
6 | Journal of the Society of Leather Technologists and Chemists | 24 | 2.45% |
7 | Journal of Hazardous Materials | 22 | 2.25% |
8 | Journal of Water Process Engineering | 22 | 2.25% |
9 | Water Research | 22 | 2.25% |
10 | Chemosphere | 21 | 2.15% |
Serial Number | Frequency | Centrality | Country | Year |
---|---|---|---|---|
1 | 265 | 0.14 | India | 1999 |
2 | 104 | 0 | China | 2001 |
3 | 83 | 0.07 | Italy | 1997 |
4 | 81 | 0.21 | Brazil | 2004 |
5 | 51 | 0 | Turkey | 2000 |
6 | 46 | 0.13 | Pakistan | 2007 |
7 | 39 | 0.72 | Spain | 1999 |
8 | 36 | 0.81 | USA | 2003 |
9 | 26 | 0.07 | Ethiopia | 2004 |
10 | 21 | 0.29 | South Korea | 1996 |
Serial Number | Frequency | Institution | Year | Half-Value Period |
---|---|---|---|---|
1 | 45 | Cent Leather Res Inst | 2004 | 7 |
2 | 29 | Anna Univ | 2005 | 9 |
3 | 20 | Sichuan Univ | 2011 | 7 |
4 | 17 | CSIR | 2011 | 5 |
5 | 15 | Univ Fed Rio Grande Do Sul | 2015 | 1 |
6 | 12 | Istanbul Tech Univ | 2002 | 4 |
7 | 12 | Univ Agr Faisalabad | 2015 | 3 |
8 | 10 | Univ Florence | 2007 | 10 |
9 | 8 | Addis Ababa Univ | 2017 | 2 |
10 | 8 | CSIR Cent Leather Res Inst | 2016 | 3 |
Serial Number | Frequency | Author | Year | Half-Value Period |
---|---|---|---|---|
1 | 24 | Gutterres M | 2015 | 3 |
2 | 11 | Sekaran G | 2012 | 3 |
3 | 10 | Munz G | 2007 | 10 |
4 | 9 | Thanasekaran K | 2005 | 6 |
5 | 9 | Calheiros CSC | 2007 | 2 |
6 | 9 | Kalyanaraman C | 2011 | 2 |
7 | 8 | Kameswari KSB | 2011 | 2 |
8 | 7 | Kaul SN | 2001 | 3 |
9 | 7 | Di Iaconi C | 2001 | 2 |
10 | 7 | Castro PML | 2007 | 2 |
Serial Number | Frequency | Centrality | Keyword | Year | Half-Value Period |
---|---|---|---|---|---|
1 | 228 | 0.7 | tannery wastewater | 1996 | 20 |
2 | 77 | 1.24 | chromium | 1997 | 18 |
3 | 67 | 0.71 | tannery | 1995 | 20 |
4 | 61 | 0.81 | wastewater | 2001 | 17 |
5 | 48 | 0.05 | wastewater treatment | 2001 | 16 |
6 | 44 | 0.11 | tannery effluent | 2004 | 13 |
7 | 40 | 0.03 | adsorption | 2003 | 15 |
8 | 29 | 0.13 | tannerywastewater | 1997 | 15 |
9 | 28 | 0.1 | heavy metal | 1997 | 22 |
10 | 26 | 0.25 | electrocoagulation | 2007 | 9 |
11 | 21 | 0.26 | constructed wetland | 2006 | 8 |
12 | 18 | 0.97 | bioremediation | 2015 | 3 |
13 | 16 | 0.25 | ozonation | 1997 | 14 |
14 | 16 | 0.07 | biodegradation | 2004 | 12 |
15 | 16 | 0.07 | activated sludge | 1992 | 21 |
16 | 14 | 0.05 | toxicity | 2004 | 4 |
17 | 12 | 0.13 | tannery wastewater treatment | 2006 | 13 |
18 | 12 | 0.1 | COD | 2009 | 4 |
19 | 12 | 0 | hexavalent chromium | 2018 | 1 |
20 | 11 | 0.13 | nanofiltration | 2011 | 3 |
Keywords | Strength | Begin | End | 1991–2022 |
---|---|---|---|---|
tannery waste-water | 2.74 | 1991 | 1996 | ▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
activated sludge | 2.19 | 1997 | 2005 | ▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
heavy metal | 1.77 | 1997 | 2002 | ▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
wastewater treatment | 2.74 | 2000 | 2008 | ▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
biological treatment | 3.62 | 2003 | 2008 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
tannery waste-water treatment | 3.29 | 2003 | 2011 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂ |
reverse osmosis | 2.2 | 2003 | 2017 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂ |
constructed wetland | 2.92 | 2006 | 2014 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂ |
sludge production | 2.34 | 2006 | 2011 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂ |
COD fractionation | 1.94 | 2006 | 2008 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
tannery industry | 3.77 | 2009 | 2014 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂ |
leather industry | 2.88 | 2009 | 2017 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▂▂▂▂▂ |
chromium removal | 1.7 | 2009 | 2014 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂ |
membrane bioreactor | 2.81 | 2012 | 2014 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂▂ |
tannery sludge | 2.53 | 2015 | 2020 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂ |
electrochemical oxidation | 2.42 | 2015 | 2020 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂ |
chemical oxygen demand | 1.97 | 2015 | 2020 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂ |
ceramic membrane | 1.82 | 2015 | 2020 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂ |
soak liquor | 1.77 | 2015 | 2017 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂ |
azo dye | 1.67 | 2015 | 2017 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂ |
activated carbon | 1.56 | 2015 | 2020 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂ |
hexavalent chromium | 2.89 | 2018 | 2020 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂ |
water treatment | 2.04 | 2018 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃ |
chromium recovery | 1.93 | 2018 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃ |
oxidative stress | 1.57 | 2018 | 2020 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Jia, X.; Wang, J.; Wang, Y.; Chen, Y.; Wu, J.; Wang, Y.; Shen, M.; Xue, H. Quantitative Analysis of the Research Development Status and Trends of Tannery Wastewater Treatment Technology. Catalysts 2022, 12, 1317. https://doi.org/10.3390/catal12111317
Li M, Jia X, Wang J, Wang Y, Chen Y, Wu J, Wang Y, Shen M, Xue H. Quantitative Analysis of the Research Development Status and Trends of Tannery Wastewater Treatment Technology. Catalysts. 2022; 12(11):1317. https://doi.org/10.3390/catal12111317
Chicago/Turabian StyleLi, Ming, Xiang Jia, Jingrui Wang, Yang Wang, Yuting Chen, Junhao Wu, Ying Wang, Mengnan Shen, and Honghai Xue. 2022. "Quantitative Analysis of the Research Development Status and Trends of Tannery Wastewater Treatment Technology" Catalysts 12, no. 11: 1317. https://doi.org/10.3390/catal12111317
APA StyleLi, M., Jia, X., Wang, J., Wang, Y., Chen, Y., Wu, J., Wang, Y., Shen, M., & Xue, H. (2022). Quantitative Analysis of the Research Development Status and Trends of Tannery Wastewater Treatment Technology. Catalysts, 12(11), 1317. https://doi.org/10.3390/catal12111317