In Situ Etching Synthesis of TiO2-SBA-15 Nanocomposite Enhancing Adsorption and Photocatalytic Degradation
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Preparation of TiO2-SBA-15 Series Catalysts
3.2.1. Preparation of SBA-15
3.2.2. Preparation of TiO2-SBA-15 Samples
3.3. Catalyst Characterization
3.4. Activity Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jo, W.K.; Kumar, S.; Isaacs, M.A.; Lee, A.F.; Karthikeyan, S. Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and congo red. Appl. Catal. B Environ. 2017, 201, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Ohtani, B. Titania photocatalysis beyond recombination: A critical review. Catalysts 2013, 3, 942–953. [Google Scholar] [CrossRef] [Green Version]
- Kou, J.; Lu, C.; Wang, J.; Chen, Y.; Xu, Z.; Varma, R.S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 2017, 117, 1445–1514. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Yuan, Y.J.; Tang, R.; Liu, Q.Y.; Bao, L.; Wang, P.; Zhong, J.; Zhao, Z.; Yu, Z.T.; Zou, Z. Rapid hydroxyl radical generation on (001)-facet-exposed ultrathin anatase TiO2 nanosheets for enhanced photocatalytic lignocellulose-to-H2 conversion. ACS Catal. 2022, 12, 2118–2125. [Google Scholar] [CrossRef]
- Abid, H.N.; Al-keisy, A.; Ahmed, D.S.; Salih, A.T.; Khammas, A. pH dependent synthesis and characterization of bismuth molybdate nanostructure for photocatalysis degradation of organic pollutants. Environ. Sci. Pollut. Res. 2022, 29, 37633–37643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lv, F.; Zhang, W.; Li, R.; Zhong, H.; Zhao, Y.; Zhang, Y.; Wang, X. Photo degradation of methyl orange by attapulgite–SnO2–TiO2 nanocomposites. J. Hazard. Mater. 2009, 171, 294–300. [Google Scholar] [CrossRef]
- Malik, A.; Hameed, S.; Siddiqui, M.J.; Haque, M.M.; Umar, K.; Khan, A.; Muneer, M. Electrical and optical properties of nickel- and molybdenum-doped titanium dioxide nanoparticle: Improved performance in dye-sensitized solar cells. J. Mater. Eng. Perform. 2014, 23, 3184–3192. [Google Scholar] [CrossRef]
- Mohamed, I.M.A.; Dao, V.D.; Yasin, A.S.; Barakat, N.A.M.; Choi, H.-S. Design of an efficient photoanode for dye-sensitized solar cells using electro-spun one-dimensional GO/N-doped nanocomposite SnO2/TiO2. Appl. Surf. Sci. 2017, 400, 355–364. [Google Scholar] [CrossRef]
- Colón, G. Towards the hydrogen production by photocatalysis. Appl. Catal. A Gen. 2016, 518, 48–59. [Google Scholar] [CrossRef]
- Marzo, L.; Pagire, S.K.; Reiser, O.; König, B. Visible-light photocatalysis: Does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 2018, 57, 10034–10072. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Fan, H.; Ma, Y.; Wang, Z.; Chang, Q. Surface defects control for ZnO nanorods synthesized by quenching and their anti-recombination in photocatalysis. Appl. Surf. Sci. 2015, 332, 47–54. [Google Scholar] [CrossRef]
- Shukla, P.; Fatimah, I.; Wang, S.; Ang, H.M.; Tadé, M.O. Photocatalytic generation of sulphate and hydroxyl radicals using zinc oxide under low-power UV to oxidise phenolic contaminants in wastewater. Catal. Today 2010, 157, 410–414. [Google Scholar] [CrossRef]
- Verma, P.; Kuwahara, Y.; Mori, K.; Raja, R.; Yamashita, H. Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications. Nanoscale 2020, 12, 11333–11363. [Google Scholar] [CrossRef]
- Bai, L.; Wang, S.; Wang, Z.; Hong, E.; Wang, Y.; Xia, C.; Wang, B. Kinetics and mechanism of photocatalytic degradation of methyl orange in water by mesoporous Nd-TiO2-SBA-15 nanocatalyst. Environ. Pollut. 2019, 248, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Filip, M.; Petcu, G.; Anghel, E.M.; Petrescu, S.; Trica, B.; Osiceanu, P.; Stanica, N.; Atkinson, I.; Munteanu, C.; Mureseanu, M.; et al. FeTi-SBA-15 magnetic nanocomposites with photocatalytic properties. Catal. Today 2021, 366, 10–19. [Google Scholar] [CrossRef]
- Wei, J.Q.; Chen, X.J.; Wang, P.F.; Han, Y.B.; Xu, J.C.; Hong, B.; Jin, H.X.; Jin, D.F.; Peng, X.L.; Li, J.; et al. High surface area TiO2/SBA-15 nanocomposites: Synthesis, microstructure and adsorption-enhanced photocatalysis. Chem. Phys. 2018, 510, 47–53. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, Z.; Lai, S.; Jiang, C.; Zhong, H. Synthesis of titanium containing SBA-15 and its application for photocatalytic degradation of phenol. Int. J. Chem. Eng. 2014, 2014, 691562. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.F.; Kamegawa, T.; Mori, K.; Li, H.X.; Yamashita, H. Calcium phosphate coatings incorporated in mesoporous TiO2/SBA-15 by a facile inner-pore sol–gel process toward enhanced adsorption-photocatalysis performances. J. Phys. Chem. C 2013, 117, 19544–19551. [Google Scholar] [CrossRef]
- Gul, A.; Ullah, R.; Sun, J.; Munir, T.; Bai, S. Synthesis of mesoporous TiO2/BMMs via hydrothermal method and its potential application toward adsorption and photocatalytic degradation of crystal violet from aqueous solution. Arab. J. Chem. 2022, 15, 103530. [Google Scholar] [CrossRef]
- Kochkar, H.; Figueras, F. Synthesis of hydrophobic TiO2–SiO2 mixed oxides for the epoxidation of cyclohexene. J. Catal. 1997, 171, 420–430. [Google Scholar] [CrossRef]
- Ernst, E.M.; Church, B.C.; Gaddis, C.S.; Snyder, R.L.; Sandhage, K.H. Enhanced hydrothermal conversion of surfactant-modified diatom microshells into barium titanate replicas. J. Mater. Res. 2007, 22, 1121–1127. [Google Scholar] [CrossRef]
- Gnanaprakasam, A.; Sivakumar, V.M.; Sivayogavalli, P.L.; Thirumarimurugan, M. Characterization of TiO2 and ZnO nanoparticles and their applications in photocatalytic degradation of azodyes. Ecotoxicol. Environ. Saf. 2015, 121, 121–125. [Google Scholar] [CrossRef]
- Li, H.; Bian, Z.; Zhu, J.; Huo, Y.; Li, H.; Lu, Y. Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J. Am. Chem. Soc. 2007, 129, 4538–4539. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, F.; Wan, Y.; Lu, Y. Homoallylic alcohol isomerization in water over an immobilized Ru(II) organometallic catalyst with mesoporous structure. J. Phys. Chem. B 2006, 110, 22942–22946. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M.; Ko, C.H.; Ryoo, R. Characterization of the porous structure of SBA-15. Chem. Mater. 2000, 12, 1961–1968. [Google Scholar] [CrossRef]
- Thunyaratchatanon, C.; Luengnaruemitchai, A.; Chaisuwan, T.; Chollacoop, N.; Chen, S.Y.; Yoshimura, Y. Synthesis and characterization of Zr incorporation into highly ordered mesostructured SBA-15 material and its performance for CO2 adsorption. Microporous Mesoporous Mater. 2017, 253, 18–28. [Google Scholar] [CrossRef]
- Luan, Z.; Maes, E.M.; van der Heide, P.A.W.; Zhao, D.; Czernuszewicz, R.S.; Kevan, L. Incorporation of titanium into mesoporous silica molecular sieve SBA-15. Chem. Mater. 1999, 11, 3680–3686. [Google Scholar] [CrossRef]
- Tandon, H.; Labarca, M.; Chakraborty, T. A scale of atomic electronegativity based on floating spherical gaussian orbital approach. Chem. Sel. 2021, 6, 5622–5627. [Google Scholar] [CrossRef]
- Elumalai, V.; Ganesh, T.; Selvakumar, C.; Sangeetha, D. Phosphonate ionic liquid immobilised SBA-15/SPEEK composite membranes for high temperature proton exchange membrane fuel cells. Mater. Sci. Energy Technol. 2018, 1, 196–204. [Google Scholar] [CrossRef]
- Téllez-Jurado, L.; Rubio, J.; Rubio, F.; Morales, E.; Oteo, J. Synthesis of inorganic-organic hybrid materials from TEOS, TBT and PDMS. J. Mater. Sci. 2003, 38, 1773–1780. [Google Scholar] [CrossRef]
- Kundu, R.S.; Dult, M.; Punia, R.; Parmar, R.; Kishore, N. Titanium induced structural modifications in bismuth silicate glasses. J. Mol. Struct. 2014, 1063, 77–82. [Google Scholar] [CrossRef]
- Huo, Y.; Zhang, Y.; Xu, W.; Tang, K.; Lu, X.; Ma, R.; Fu, Y.; Zhu, W. Acid-modulated synthesis of Ti-MWW zeolites with rich framework ti species for efficient epoxidation. Ind. Eng. Chem. Res. 2020, 59, 19929–19937. [Google Scholar] [CrossRef]
- Perathoner, S.; Lanzafame, P.; Passalacqua, R.; Centi, G.; Schlögl, R.; Su, D.S. Use of mesoporous SBA-15 for nanostructuring titania for photocatalytic applications. Microporous Mesoporous Mater. 2006, 90, 347–361. [Google Scholar] [CrossRef]
Samples | SBET/m2/g | D/nm | Vpore/cc·g−1 |
---|---|---|---|
SBA-15 | 773.4 | 6.62 | 0.833 |
5%-TiO2-SBA-15 | 681.2 | 5.40 | 0.801 |
10%-TiO2-SBA-15 | 650.5 | 3.64 | 0.588 |
20%-TiO2-SBA-15 | 628.9 | 3.52 | 0.526 |
30%-TiO2-SBA-15 | 409.6 | 3.12 | 0.046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, F.; Miao, Y.; Yang, D.; Mao, B.; Bian, Z.; Zhu, F. In Situ Etching Synthesis of TiO2-SBA-15 Nanocomposite Enhancing Adsorption and Photocatalytic Degradation. Catalysts 2022, 12, 1334. https://doi.org/10.3390/catal12111334
Lv F, Miao Y, Yang D, Mao B, Bian Z, Zhu F. In Situ Etching Synthesis of TiO2-SBA-15 Nanocomposite Enhancing Adsorption and Photocatalytic Degradation. Catalysts. 2022; 12(11):1334. https://doi.org/10.3390/catal12111334
Chicago/Turabian StyleLv, Fujian, Yingchun Miao, Didi Yang, Bing Mao, Zhenfeng Bian, and Fengxia Zhu. 2022. "In Situ Etching Synthesis of TiO2-SBA-15 Nanocomposite Enhancing Adsorption and Photocatalytic Degradation" Catalysts 12, no. 11: 1334. https://doi.org/10.3390/catal12111334
APA StyleLv, F., Miao, Y., Yang, D., Mao, B., Bian, Z., & Zhu, F. (2022). In Situ Etching Synthesis of TiO2-SBA-15 Nanocomposite Enhancing Adsorption and Photocatalytic Degradation. Catalysts, 12(11), 1334. https://doi.org/10.3390/catal12111334