Solar Heterogenous Photocatalytic Degradation of Methylthionine Chloride on a Flat Plate Reactor: Effect of pH and H2O2 Addition
Abstract
:1. Introduction
2. Results and Discussion
2.1. MTC Degradation by Photolysis
2.2. Solar Heterogeneous Photocatalysis to Degrade MTC
2.3. Kinetic Analysis Results
2.4. Statistical Analysis Results
2.5. Collector Area per Order (ACO) Estimation
3. Materials and Methods
3.1. Flat Plate Solar Reactor
3.2. Process and Experimental Design for the Study
3.3. Kinetic Analysis
3.4. Statistical Analysis
3.5. Solar Energy-Driven System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruiz-Hitzky, E. Molecular access to intracrystalline tunnels of sepiolite. J. Mater. Chem. 2001, 11, 86–91. [Google Scholar] [CrossRef]
- Santamarina, J.C.; Klein, K.A.; Wang, Y.H.; Prencke, E. Specific surface: Determination and relevance. Can. Geotech. J. 2002, 39, 233–241. [Google Scholar] [CrossRef]
- Wang, R.; Guo, M.; Hu, Y.; Zhou, J.; Wu, R.; Yang, X. A Molecularly Imprinted Fluorescence Sensor Based on the ZnO Quantum Dot Core–Shell Structure for High Selectivity and Photolysis Function of Methylene Blue. ACS Omega 2020, 5, 20664–20673. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, R.H.; Adler, H.; Pickhardt, M.; Mandelkow, E. Lest we forget you-methylene blue. Neurobiol. Aging 2011, 32, 2325.e7–2325.e16. [Google Scholar] [CrossRef]
- Jing, H.P.; Wang, C.C.; Zhang, Y.W.; Wang, P.; Li, R. Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 2014, 4, 54454–54462. [Google Scholar] [CrossRef]
- Harrison, B.J.; Triponez, F. Intraoperative adjuncts in surgery for primary hyperparathyroidism. Langenbeck’s Arch. Surg. 2009, 394, 799–809. [Google Scholar] [CrossRef]
- Pollack, G.; Pollack, A.; Delfiner, J.; Fernández, J. Parathyroid surgery and methylene blue: A review with guidelines for safe intraoperative use. Laryngoscope 2009, 119, 1941–1946. [Google Scholar] [CrossRef]
- Van der Vorst, J.; Schaafsma, B.; Verbeek, F.; Swijnenburg, R.; Tummers, Q.; Hutteman, M.; Hamming, J.F.; Kievit, J.; Frangioni, J.; Van de Velve, C.; et al. Intraoperative near-infrared fluorescence imaging of parathyroid adenomas with use of low-dose methylene blue. Head Neck 2013, 36, 853–858. [Google Scholar] [CrossRef] [Green Version]
- Borghei, Y.S.; Hosseini, M.; Ganjali, M.R. Visual detection of miRNA using peroxidase-like catalytic activity of DNA-CuNCs and methylene blue as indicator. Clin. Chim. Acta 2018, 483, 119–125. [Google Scholar] [CrossRef]
- Rafiee-Pour, H.A.; Behpour, M.; Keshavarz, M. A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: Application to breast cancer biomarker miRNA-21. Biosens. Bioelectron. 2016, 77, 202–207. [Google Scholar] [CrossRef]
- Dos Santos, A.F.; Terra, L.F.; Wailemann, R.A.M.; Oliveira, T.C.; Gomes, V.M.; Mineiro, M.F.; Meotti, F.C.; Bruni-Cardoso, A.; Baptista, M.S.; Labriola, L. Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells. BMC Cancer 2017, 17, 194. [Google Scholar] [CrossRef] [Green Version]
- Hosseinzadeh, R.; Khorsandi, K.; Jahanshiri, M. Combination photodynamic therapy of human breast cancer using salicylic acid and methylene blue. Spectrochim. Acta-A Mol. Biomol. Spectrosc. 2017, 184, 198–203. [Google Scholar] [CrossRef]
- Da Collina, G.A.; Freire, F.; Santos, T.P.D.C.; Sobrinho, N.G.; Aquino, S.; Prates, R.A.; da Silva, D.D.F.T.; Tempestini-Horllana, A.C.R.; Pavani, C. Controlling Methylene Blue aggregation: A more efficient alternative to treat Candida albicans infections using Photodynamic Therapy. Photochem. Photobiol. Sci. 2018, 17, 1355–1364. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Wintner, A.; Seed, P.C.; Brauns, T.; Gelfand, J.A.; Hamblin, M.R. Antimicrobial photodynamic therapy mediated by methylene blue and potassium iodide to treat urinary tract infection in a female rat model. Sci. Rep. 2018, 8, 7257. [Google Scholar] [CrossRef]
- Fito, J.; Abrham, S.; Angassa, K. Adsorption of Methylene Blue from Textile Industrial Wastewater onto Activated Carbon of Parthenium hysterophorus. Int. J. Environ. Res. 2020, 14, 501–511. [Google Scholar] [CrossRef]
- Duran-Jimenez, G.; Hernandez-Montoya, V.; Montes-Moran, M.A.; Bonilla-Petriciolet, A.; Rangel-Vazquez, N.A. Adsorption of dyes with different molecular properties on activated carbons prepared from lignocellulosic wastes by Taguchi method. Microporous Mesoporous Mater. 2014, 199, 99–107. [Google Scholar] [CrossRef]
- Dariani, R.S.; Esmaeili, A.; Mortezaali, A.; Dehghanpour, S. Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik 2016, 127, 7143–7154. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S.; Mastuli, M.S. Acid-factionalized biomass material for methylene blue dye removal: A comprehensive adsorption and mechanism study. J. Taibah Univ. Sci. 2020, 14, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.-M.; Yang, X.-L.; Xie, X.-Y.; Yang, Z.-Y.; Hu, K.; Wu, Y.-J.; Jiang, Y.-Y.; Liu, T.-F.; Fang, W.-H.; Huang, X.-Y. Comparative transcriptome analysis of Anguilla japonica livers following exposure to methylene blue. Aquac. Res. 2017, 49, 1232–1241. [Google Scholar] [CrossRef]
- Xu, T.; Wang, X.; Huang, Y.; Lai, K.; Fan, Y. Rapid detection of trace methylene blue and malachite green in four fish tissues by ultra-sensitive surface-enhanced Raman spectroscopy coated with gold nanorods. Food Control 2019, 106, 106720. [Google Scholar] [CrossRef]
- Salh, D.M.; Aziz, B.K.; Kaufhold, S. High Adsorption Efficiency of Topkhana Natural Clay for Methylene Blue from Medical Laboratory Wastewater: A Linear and Nonlinear Regression. Silicon 2020, 12, 87–99. [Google Scholar] [CrossRef]
- Payra, S.; Challagulla, S.; Bobde, Y.; Chakraborty, C.; Ghosh, B.; Roy, S. Probing the Photo- and Electro-catalytic Degradation Mechanism of Methylene Blue Dye Over ZIF-derived ZnO. J. Hazard. Mater. 2019, 373, 377–388. [Google Scholar] [CrossRef]
- Guillossou, R.; Le Roux, J.; Mailler, R.; Vulliet, E.; Morlay, C.; Nauleau, F.; Gasperi, J.; Rocher, V. Organic micropollutants in a large wastewater treatment plant: What are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment? Chemosphere 2019, 218, 1050–1060. [Google Scholar] [CrossRef]
- Kishor, R.; Purchase, D.; Ferreira, L.F.R.; Mulla, S.I.; Bilal, M.; Bharagava, R.N. Environmental and Health Hazards of Textile Industry Wastewater Pollutants and Its Treatment Approaches. In The Handbook of Environmental Chemistry; Springer Nature: Basingstoke, UK, 2020; pp. 1–24. [Google Scholar] [CrossRef]
- Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 2021, 9, 105012. [Google Scholar] [CrossRef]
- Sharma, P.; Kaur, R.; Baskar, C.; Chung, W.J. Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination 2010, 259, 249–257. [Google Scholar] [CrossRef]
- Gines-Palestino, R.S.; Oropeza-De la Rosa, E.; Montalvo-Romero, C.; Cantú-Lozano, D. Rheokinetic and efectiveness during the phenol removal in mescal vinasses with a rotary disks photocatalytic reactor (RDPR). Rev. Mex. Ing. Quim. 2020, 19, 639–652. [Google Scholar] [CrossRef]
- Pavan, F.; Lima, E.; Dias, S.; Mazzocato, A. Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. J. Hazard. Mater. 2008, 15, 703–712. [Google Scholar] [CrossRef]
- Thakur, S.; Pandey, S.; Arotiba, O.A. Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr. Polym. 2016, 153, 34–46. [Google Scholar] [CrossRef]
- Adelin, M.A.; Gunawan, G.; Nur, M.; Haris, A.; Widodo, D.S.; Suyati, L. Ozonation of methylene blue and its fate study using LC-MS/MS. J. Phys. Conf. Ser. 2020, 1524, 012079. [Google Scholar] [CrossRef]
- Morones-Esquivel, M.M.; Núñez-Núñez, C.M.; González-Burciaga, L.A.; Hernández-Mendoza, J.L.; Osorio-Revilla, G.I.; Proal-Nájera, J.B. Kinetics and statistical approach for 2,5-dichlorophenol degradation in short reaction time by solar TiO2/glass photocatalysis. Rev. Mex. Ing. Quim. 2020, 19, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Núñez-Núñez, C.M.; Osorio-Revilla, G.I.; Villanueva-Fierro, I.; Antileo, C.; Proal-Nájera, J.B. Solar fecal coliform disinfection in a wastewater treatment plant by oxidation processes: Kinetic analysis as a function of solar radiation. Water 2020, 12, 639. [Google Scholar] [CrossRef] [Green Version]
- López-Ojeda, G.; Vargas-Zavala, A.; Gutiérrez-Lara, M.; Ramírez-Zamora, R.; Duran-Moreno, A. Oxidación Fotoelectrocatalítica de fenol y 4-clorofenol con un soporte de titanio impregnado con TiO2. Rev. Int. Contam. Ambient. 2011, 27, 75–84. [Google Scholar]
- González-Burciaga, L.A.; Núñez-Núñez, C.M.; Proal-Nájera, J.B. Challenges of TiO2 heterogeneous photocatalysis on cytostatic compounds degradation: State of the art. Environ. Sci. Pollut. Res. 2021, 1–24. Available online: https://link.springer.com/article/10.1007/s11356-021-17241-8 (accessed on 21 December 2021). [CrossRef] [PubMed]
- Asghar, A.; Raman, A.A.A.; Daud, W.M.A.W. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. J. Clean. Prod. 2015, 87, 826–838. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, S. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. 2020, 401, 126158. [Google Scholar] [CrossRef]
- González-Burciaga, L.A.; Núñez-Núñez, C.M.; Morones-Esquivel, M.M.; Ávila-Santos, M.; Lemus-Santana, A.; Proal-Nájera, J.B. Characterization and comparative performance of TiO2 photocatalysts on 6-mercaptopurine degradation by solar heterogeneous photocatalysis. Catalysts 2020, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Sirés, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res. 2014, 21, 8336–8367. [Google Scholar] [CrossRef]
- Waghmode, T.R.; Kurade, M.B.; Sapkal, R.T.; Bhosale, C.H.; Jeon, B.H.; Govindwar, S.P. Sequential photocatalysis and biological treatment for the enhanced degradation of the persistent azo dye methyl red. J. Hazard. Mater. 2019, 371, 115–122. [Google Scholar] [CrossRef]
- Pantoja-Espinoza, J.C.; Proal-Nájera, J.B.; García-Roig, M.; Cháirez-Hernández, I.; Osorio-Revilla, G. Eficiencias comparativas de inactivación de bacterias coliformes en efluentes municipales por fotólisis (UV) y por fotocatálisis (UV/TiO2/SiO2) Caso: Depuradora de Aguas de Salamanca, España. Rev. Mex. Ing. Quim. 2015, 14, 119–135. [Google Scholar]
- Morones-Esquivel, M.M.; Pantoja-Espinoza, J.C.; Proal-Nájera, J.B.; Cháirez-Hernández, I.; Gurrola-Reyes, J.N.; Ávila-Santos, M. Uso de un reactor de placa plana (TiO2/vidrio) para la degradación de 2,5-diclorofenol por fotocatálisis solar. Rev. Int. Contam. Ambient. 2017, 33, 605–616. [Google Scholar] [CrossRef]
- Dean, J.C.; Oblinsky, D.J.; Rafiq, S.; Scholes, G.D. Methylene Blue Exciton States Steer Nonradiative Relaxation: Ultrafast Spectroscopy of Methylene Blue Dimer. J. Phys. Chem. B 2016, 120, 440–454. [Google Scholar] [CrossRef]
- Feitz, A.J.; Boyden, B.H.; Waite, T.D. Evaluation of two solar pilot scale fixed bed photocatalytic reactors. Water Res. 2000, 34, 3927–3932. [Google Scholar] [CrossRef]
- Freudenhammer, H.; Bahnemann, D.; Bousselmi, L.; Geissen, S.U.; Ghrabi, A.; Saleh, F.; Si-Salah, A.; Siemon, V.; Vogelpohl, A. Detoxification and recycling of wastewater by solar-catalytic treatment. Water Sci. Technol. 1997, 35, 149–156. [Google Scholar] [CrossRef]
- Malato, S.; Blanco, J.; Maldonado, M.I.; Fernández, P.; Alarcón, D.; Collares, M.; Farinha, J.; Correia de Oliveira, J. Engineering of solar photocatalytic collectors. Sol. Energy 2004, 77, 513–524. [Google Scholar] [CrossRef]
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
- Braham, R.J.; Harris, A.T. Review of Major Design and Scale-up Considerations for Solar Photocatalytic Reactors. Ind. Eng. Chem. Res. 2009, 48, 8890–8905. [Google Scholar] [CrossRef]
- Bergmann, K.; O’Konski, C.T. A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite. J. Phys. Chem. 1963, 67, 2169–2177. [Google Scholar] [CrossRef]
- Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B-Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Chen, J.; Cesario, T.C.; Rentzepis, P.M. Effect of pH on Methylene Blue Transient States and Kinetics and Bacteria Photoinactivation. J. Phys. Chem. A 2011, 115, 2702–2707. [Google Scholar] [CrossRef]
- Zaruma-Arias, P.E.; Núñez-Núñez, C.M.; Villanueva-Fierro, I.; Cháirez-Hernández, I.; Lares-Assef, I.A.; Gurrola-Reyes, J.N.; Proal-Nájera, J.B. Methylthionine chloride degradation on pilot UV-C reactors: Kinetics of photolytic and heterogeneous photocatalytic reactions. Rev. Mex. Ing. Quim. 2021, 20, 649–662. [Google Scholar] [CrossRef]
- Zhou, Y.; Shuai, L.; Jiang, X.; Jiao, F.; Yu, J. Visible-light-driven photocatalytic properties of layered double hydroxide supported-Bi2O3 modified by Pd(II) for methylene blue. Adv. Powder Technol. 2015, 26, 439–447. [Google Scholar] [CrossRef]
- Djellabi, R.; Ghorab, M.F.; Sehili, T. Simultaneous Removal of Methylene Blue and Hexavalent Chromium from Water Using TiO2/Fe(III)/H2O2/Sunlight. Clean-Soil Air Water 2017, 45, 1500379. [Google Scholar] [CrossRef]
- Benhabiles, O.; Mahmoudi, H.; Lounici, H.; Goosen, M.F.A. Effectiveness of a photocatalytic organic membrane for solar degradation of methylene blue pollutant. Desalin. Water Treat. 2015, 57, 14067–14076. [Google Scholar] [CrossRef]
- Chaudhari, S.M.; Gawal, P.M.; Sane, P.K.; Sontakke, S.M.; Nemade, P.R. Solar light-assisted photocatalytic degradation of methylene blue with Mo/TiO2: A comparison with Cr-and Ni-doped TiO2. Res. Chem. Intermed. 2018, 44, 3115–3134. [Google Scholar] [CrossRef]
- Wang, J.L.; Xu, L.J. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit. Rev. Env. Sci. Technol. 2012, 42, 251–325. [Google Scholar] [CrossRef]
- Cubillas, A.M.; Schmidt, M.; Scharrer, M.; Euser, T.G.; Etzold, B.J.M.; Taccardi, N.; Wasserscheid, P.; Russell, P.S.J. Ultra-Low Concentration Monitoring of Catalytic Reactions in Photonic Crystal Fiber. Chem. Eur. J. 2012, 18, 1586–1590. [Google Scholar] [CrossRef]
- Núñez-Núñez, C.M.; Chairez-Hernández, I.; García-Roig, M.; García-Prieto, J.C.; Melgoza-Alemán, R.M.; Proal-Nájera, J.B. UV-C/H2O2 heterogeneous photocatalytic inactivation of coliforms in municipal wastewater in a TiO2/SiO2 fixed bed reactor: A kinetic and statistical approach. React. Kinet. Mech. Catal. 2018, 125, 1159–1177. [Google Scholar] [CrossRef]
- Nuñez, S.C.; Yoshimura, T.M.; Ribeiro, M.S.; Junqueira, H.C.; Maciel, C.; Coutinho-Neto, M.D.; Baptista, M.S. Urea enhances the photodynamic efficiency of methylene blue. J. Photochem. Photobiol. B Biol. 2015, 150, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Calzada, L.A.; Castellanos, R.; García, L.A.; Klimova, T.E. TiO2, SnO2 and ZnO catalysts supported on mesoporous SBA-15 versus unsupported nanopowders in photocatalytic degradation of methylene blue. Microporous Mesoporous Mater. 2019, 285, 247–258. [Google Scholar] [CrossRef]
- Schneider, O.M.; Liang, R.; Bragg, L.; Jaciw-Zurakowsky, I.; Fattahi, A.; Rathod, S.; Peng, P.; Servos, M.R.; Zhou, Y.N. Photocatalytic Degradation of Microcystins by TiO2 Using UV-LED Controlled Periodic Illumination. Catalysts 2019, 9, 181. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.; Silk, R.; Smith, M.; Dong, Y.; Chen, W.T.; Waterhouse, G.I.N. Hierarchical TiO2 Nanoflower Photocatalysts with Remarkable Activity for Aqueous Methylene Blue Photo-Oxidation. ACS Omega 2020, 5, 18919–18934. [Google Scholar] [CrossRef]
- Bolton, J.R.; Bircher, K.G.; Tumas, W.; Tolman, C.A. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report). Pure Appl. Chem. 2009, 73, 627–637. [Google Scholar] [CrossRef]
- Bandala, E.R.; Estrada, C. Comparison of solar collection geometries for application to photocatalytic degradation of organic contaminants. J. Sol. Energy Eng. 2007, 129, 22–26. [Google Scholar] [CrossRef]
- Blanco, J. El reactor solar fotocatalítico: Estado del arte. In Tecnologías Solares Para la Desinfección y Descontaminación de Agua (SOLARSAFEWATER); Blesa, M.A., Blanco, J., Eds.; ByToner: La Plata, Argentina, 2005; pp. 277–301. [Google Scholar]
- Pantoja, J.C. Estudio de la Degradación de Materia Orgánica Presente en Aguas Residuales Municipales Mediante el Uso de Dióxido de Titanio (TiO2) Como Fotocatalizador. Ph.D. Thesis, Centro Interdisciplinario de Investigación y Desarrollo Integral Regional Unidad Durango, Instituto Politécnico Nacional, Durango, México, 2015. [Google Scholar]
- Stintzing, A. Solar Photocatalytic Treatment of Textile Wastewater at a Pilot Plant in Menzel Temime/Tunisia. Ph.D. Thesis, Institut für Thermische Verfahrenstechnik der Technischen Universität Clausthal, Clausthal, Germany, 2003. [Google Scholar]
- Irigoyen-Campuzano, R.; González-Béjar, M.; Pino, E.; Proal-Nájera, J.B.; Pérez-Prieto, J. A Metal-Free, Nonconjugated Polymer for Solar Photocatalysis. Chemistry 2017, 23, 2867–2876. [Google Scholar] [CrossRef]
- Alinsafi, A.; Evenou, F.; Abdulkarim, E.M.; Pons, M.N.; Zahraa, O.; Benhammou, A.; Yaacoubi, A.; Nejmeddine, A. Treatment of textile industry wastewater by supported photocatalysis. Dyes Pigm. 2007, 74, 439–445. [Google Scholar] [CrossRef]
- Zahraa, O.; Maire, S.; Evenou, F.; Hachem, C.; Pons, M.N.; Alinsafi, A.; Bouchy, M. Treatment of wastewater dyeing agent by photocatalytic process in solar reactor. Int. J. Photoenergy 2006, 2006, 046961. [Google Scholar] [CrossRef]
- Maleki, H.; Bertola, V. TiO2 Nanofilms on Polymeric Substrates for the Photocatalytic Degradation of Methylene Blue. ACS Appl. Nano Mater. 2019, 2, 7237–7244. [Google Scholar] [CrossRef] [Green Version]
- Jawad, A.H.; Alkarkhi, A.F.M.; Mubarak, N.S.A. Photocatalytic decolorization of methylene blue by an immobilized TiO2 film under visible light irradiation: Optimization using response surface methodology (RSM). Desalin. Water Treat. 2014, 56, 161–172. [Google Scholar] [CrossRef]
- Jain, P.; Kumar, A.; Verma, N.; Gupta, R.K. In-situ synthesis of TiO2 nanoparticles in ACF: Photocatalytic degradation under continuous flow. Sol. Energy 2019, 189, 35–44. [Google Scholar] [CrossRef]
- Nawi, M.A.; Zain, S.M. Enhancing the surface properties of the immobilized Degussa P-25 TiO2 for the efficient photocatalytic removal of methylene blue from aqueous solution. Appl. Surf. Sci. 2012, 258, 6148–6157. [Google Scholar] [CrossRef]
- Chaparro, C.V.; Cabanzo, R.; Mejía, E. Estudio de la adsorción de azul de metileno sobre dióxido de grafeno. Rev. Colomb. Mater. 2014, 5, 131–139. [Google Scholar]
- Kuhn, H.; Försterling, H. Chemical kinetics. In Principles of Physical Chemistry, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2000; pp. 735–794. [Google Scholar]
Photolysis | Photocatalysis | ||||||||
---|---|---|---|---|---|---|---|---|---|
pH | H2O2 (mM/L) | Kph (min−1) | Error | τ1/2 (min) | Degradation (%) | KphC (min−1) | Error | τ1/2 (min) | Degradation (%) |
3.5 | 0 | 0.0199 | 0.000538 | 34.90 | 68.68 | 0.0340 | 0.000704 | 20.37 | 86.68 |
0.5 | 0.0151 | 0.001216 | 45.76 | 56.14 | 0.0255 | 0.002014 | 27.18 | 75.22 | |
1 | 0.0143 | 0.000867 | 48.42 | 56.26 | 0.0276 | 0.002333 | 25.15 | 76.26 | |
6.5 | 0 | 0.0121 | 0.001125 | 57.36 | 45.56 | 0.0222 | 0.003326 | 31.26 | 63.73 |
0.5 | 0.0113 | 0.001537 | 61.24 | 41.22 | 0.0225 | 0.001575 | 30.80 | 69.44 | |
1 | 0.0103 | 0.001493 | 67.55 | 39.43 | 0.0153 | 0.001542 | 45.35 | 53.77 | |
9 | 0 | 0.0015 | 0.000379 | 470.20 | 6.28 | 0.0181 | 0.002466 | 38.30 | 57.17 |
0.5 | 0.0093 | 0.001157 | 74.16 | 36.53 | 0.0093 | 0.001146 | 74.18 | 38.43 | |
1 | 0.0012 | 0.000359 | 599.80 | 3.27 | 0.0043 | 0.000504 | 160.71 | 18.74 |
Photolysis | Photocatalysis | Efficiency (ε) | |
---|---|---|---|
H2O2 (mM/L) | (m2/m3–Order) | (m2/m3–Order) | |
0 | 97 | 56 | 42.26% |
0.5 | 137 | 81 | 40.87% |
1 | 136 | 78 | 42.64% |
Support | Catalyst | TiO2 (g/m2) | Dye Initial Concentration | Radiation | Degradation (%) | Ref. |
---|---|---|---|---|---|---|
Concrete | TiO2-P25 | 25 | 3MTC | Solar radiation | 80 | [67] |
Glass slides | TiO2-P25 | 2.8 | 4BDR (50 mg/L) | UV lamp | 94 | [69] |
5YCDG (50 mg/L) | 89 | |||||
Glass plate | TiO2 | 2.8 | 6DY (25 mg/L) | UV lamp | ~60 | [70] |
DY (25 mg/L) | Solar radiation | ~45 | ||||
7DB (25 mg/L) | UV lamp | ~80 | ||||
1PP | TiO2-P25 | 0.35 | MTC (4 mg/L) | UV lamp | ~90 | [71] |
Glass plate | Titanium (IV) oxide (99% anatase) | 6.5 | MTC (20 mg/L) | UV-vis lamp | 96.1 | [72] |
39 | 98.68 | |||||
2ACF | TiO2/ACF | 4 | MTC (40 mg/L) | UV lamp | 99 | [73] |
Glass plate | P25-TiO2/ENR/PVC composites | 15 | MTC (12 mg/L) | UV lamp | 99.49 | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaruma-Arias, P.E.; Núñez-Núñez, C.M.; González-Burciaga, L.A.; Proal-Nájera, J.B. Solar Heterogenous Photocatalytic Degradation of Methylthionine Chloride on a Flat Plate Reactor: Effect of pH and H2O2 Addition. Catalysts 2022, 12, 132. https://doi.org/10.3390/catal12020132
Zaruma-Arias PE, Núñez-Núñez CM, González-Burciaga LA, Proal-Nájera JB. Solar Heterogenous Photocatalytic Degradation of Methylthionine Chloride on a Flat Plate Reactor: Effect of pH and H2O2 Addition. Catalysts. 2022; 12(2):132. https://doi.org/10.3390/catal12020132
Chicago/Turabian StyleZaruma-Arias, Pablo E., Cynthia M. Núñez-Núñez, Luis A. González-Burciaga, and José B. Proal-Nájera. 2022. "Solar Heterogenous Photocatalytic Degradation of Methylthionine Chloride on a Flat Plate Reactor: Effect of pH and H2O2 Addition" Catalysts 12, no. 2: 132. https://doi.org/10.3390/catal12020132
APA StyleZaruma-Arias, P. E., Núñez-Núñez, C. M., González-Burciaga, L. A., & Proal-Nájera, J. B. (2022). Solar Heterogenous Photocatalytic Degradation of Methylthionine Chloride on a Flat Plate Reactor: Effect of pH and H2O2 Addition. Catalysts, 12(2), 132. https://doi.org/10.3390/catal12020132