Study on Catalytic Water Oxidation Properties of Polynuclear Manganese Containing Polyoxometalates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Analysis
2.1.1. Infrared Spectrum (IR) Test
2.1.2. X-ray Transmission Spectroscopy
2.2. Electrochemical Characteristics
2.2.1. Cyclic Voltammetry
2.2.2. pH
2.3. Assembly of Thin Film Electrode
UV-Vis Absorption Spectrum Test
2.4. Oxygen Evolution Reaction (OER)
2.4.1. OER of MnxPOMs Solution
2.4.2. OER of Assembled Thin Film Electrode
3. Materials and Methods
3.1. Materials and Apparatus
3.1.1. Materials
3.1.2. Apparatus
3.2. Preparation of Polynuclear Manganese Containing Polyoxometalates
3.3. LBL Assembled Composite Film Modified Electrode
3.4. UV-Vis Absorption Spectra
3.5. Electrochemical Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pope, M.T.; Müller, A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines. Angew. Chem. Int. Ed. 1991, 30, 34–48. [Google Scholar] [CrossRef]
- Orlandi, M.; Argazzi, R.; Sartorel, A.; Carraro, M.; Scorrano, G.; Bonchio, M.; Scandola, F. Ruthenium polyoxometalate water splitting catalyst: Very fast hole scavenging from photogenerated oxidants. Chem. Commun. 2010, 46, 3152–3154. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Sadasivan, R. Modified Mn substituted POMs: Synthetic strategies, structural diversity to applications. Prog. Mater. Sci. 2021, 118, 100759. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Heydari-Soureshjani, E.; Rezaei, B. Nanostructure polyoxometalates containing Co, Ni, and Cu as powerful and stable catalysts for hydrogen evolution reaction in acidic and alkaline solutions. Int. J. Hydrog. Energy 2017, 42, 5026–5034. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-J.; Wang, X.-L.; Qin, C.; Zhang, Z.-M.; Li, Y.-G.; Chen, W.-L.; Wang, E.-B. Polyoxometalate-assisted synthesis of transition-metal cubane clusters as artificial mimics of the oxygen-evolving center of photosystem II. Co-ord. Chem. Rev. 2016, 313, 94–110. [Google Scholar] [CrossRef]
- Al-Oweini, R.; Bassil, B.S.; Friedl, J.; Kottisch, V.; Ibrahim, M.; Asano, M.; Keita, B.; Novitchi, G.; Lan, Y.; Powell, A.; et al. Synthesis and Characterization of Multinuclear Manganese-Containing Tungstosilicates. Inorg. Chem. 2014, 53, 5663–5673. [Google Scholar] [CrossRef]
- Das, S.; Misra, A.; Roy, S. Enhancement of photochemical heterogeneous water oxidation by a manganese based soft oxometalate immobilized on a graphene oxide matrix. New J. Chem. 2016, 40, 994–1003. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Ding, Y.; Zheng, M. Polyoxometalate-based manganese clusters as catalysts for efficient photocatalytic and electrochemical water oxidation. Appl. Catal. B Environ. 2017, 209, 45–52. [Google Scholar] [CrossRef]
- Du, Y.; Yu, T.; Fu, Z.; Bi, L. A multilayer assembly of two mixed-valence Mn16-containing polyanions and study of their electrocatalytic activities towards water oxidation. Dalton Trans. 2018, 47, 7282–7289. [Google Scholar] [CrossRef]
- Zhou, Q.; Du, Y.; Qu, Z.; Bi, L. Facile multilayer assemble of a mixed-valence Mn4-containing silicotungstate and its electrochemical study with Co3O4 as co-catalyst for photoelectrocatalytic water oxidation. J. Electroanal. Chem. 2021, 894, 115339. [Google Scholar] [CrossRef]
- Al-Oweini, R.; Sartorel, A.; Bassil, B.; Natali, M.; Berardi, S.; Scandola, F.; Kortz, U.; Bonchio, M. Photocatalytic Water Oxidation by a Mixed-Valent MnIII3MnIVO3 Manganese Oxo Core that Mimics the Natural Oxygen-Evolving Center. Angew. Chem. Int. Ed. 2014, 53, 11182–11185. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, B.; Forster, J.; Goetz, M.K.; Yücel, D.; Berger, C.; Jacob, T.; Streb, C. Visible-Light-Driven Water Oxidation by a Molecular Manganese Vanadium Oxide Cluster. Angew. Chem. Int. Ed. 2016, 55, 6329–6333. [Google Scholar] [CrossRef] [PubMed]
- Car, P.-E.; Spingler, B.; Weyeneth, S.; Patscheider, J.; Patzke, G. All-inorganic 1D chain-based architecture of a novel dimanganese-substituted Keggin polyoxotungstate. Polyhedron 2013, 52, 151–158. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Jameson, G.B.; O’Connor, C.J.; Pope, M.T. High-valent manganese in polyoxotungstates—II. Oxidation of the tetramanganese heteropolyanion [Mn4(H2O)2(PW9O34)2]10−. Polyhedron 1996, 15, 917–922. [Google Scholar] [CrossRef]
- Jiang, N.; Li, F.; Xu, L.; Li, Y.; Li, J. New assembly of transition metal complexes based on [GeW9O34]10− building blocks: Syntheses, crystal structures and magnetic properties. Inorg. Chem. Commun. 2010, 13, 372–375. [Google Scholar] [CrossRef]
- Mitchell, S.G.; Molina, P.I.; Khanra, S.; Miras, H.N.; Prescimone, A.; Cooper, G.J.T.; Winter, R.S.; Brechin, E.K.; Long, D.-L.; Cogdell, R.J.; et al. A Mixed-Valence Manganese Cubane Trapped by Inequivalent Trilacunary Polyoxometalate Ligands. Angew. Chem. Int. Ed. 2011, 50, 9154–9157. [Google Scholar] [CrossRef]
- Fang, X.; Luban, M. {Mn14W48} aggregate: The perspective of isopolyanions as ligands. Chem. Commun. 2011, 47, 3066–3068. [Google Scholar] [CrossRef]
- Bassil, B.S.; Ibrahim, M.; Al-Oweini, R.; Asano, M.; Wang, Z.; van Tol, J.; Dalal, N.S.; Choi, K.-Y.; Ngo, B.R.; Keita, B.; et al. A Planar {Mn19(OH)12}26+ Unit Incorporated in a 60-Tungsto-6-Silicate Polyanion. Angew. Chem.-Int. Ed. 2011, 50, 5961–5964. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, X.; Fu, Z.; Pei, J.; Bi, L. Fabrication of Six Manganese Containing Polyoxometalate Modified Graphite C3N4 Nanosheets Catalysts Used to Catalyze Water Decomposition. Catalysts 2021, 11, 856. [Google Scholar] [CrossRef]
- Santos, I.C.; Gamelas, J.A.; Duarte, T.A.; Simoes, M.M.; Neves, M.G.P.; Cavaleiro, J.A.; Cavaleiro, A.M. Catalytic homogeneous oxidation of monoterpenes and cyclooctene with hydrogen peroxide in the presence of sandwich-type tungstophosphates [M4(H2O)2(PW9O34)2]n−, M = CoII, MnII and FeIII. J. Mol. Catal. A Chem. 2017, 426, 593–599. [Google Scholar] [CrossRef]
- Zou, G.; Zhong, W.; Mao, L.; Xu, Q.; Xiao, J.; Yin, D.; Xiao, Z.; Kirk, S.R.; Shu, T. A non-nitric acid method of adipic acid synthesis: Organic solvent- and promoter-free oxidation of cyclohexanone with oxygen over hollow-structured Mn/TS-1 catalysts. Green Chem. 2015, 17, 1884–1892. [Google Scholar] [CrossRef]
- Givirovskiy, G.; Ruuskanen, V.; Väkiparta, T.; Ahola, J. Electrocatalytic performance and cell voltage characteristics of 1st-row transition metal phosphate (TM-Pi) catalysts at neutral pH. Mater. Today Energy 2020, 17, 100426. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, J.; Jiang, J.; Liu, A.B.; Dong, S. Fabrication of a Metalloporphyrin−Polyoxometalate Hybrid Film by a Layer-by-Layer Method and Its Catalysis for Hydrogen Evolution and Dioxygen Reduction. J. Phys. Chem. B 2003, 107, 9744–9748. [Google Scholar] [CrossRef]
- Huang, M.; Bi, L.; Shen, Y.; Liu, A.B.; Dong, S. Nanocomposite Multilayer Film of Preyssler-Type Polyoxometalates with Fine Tunable Electrocatalytic Activities. J. Phys. Chem. B 2004, 108, 9780–9786. [Google Scholar] [CrossRef]
Abbreviation | Chemical Formula | N (MnII) | N (MnIII) | N (MnIV) | Total N (Mn) |
---|---|---|---|---|---|
Mn2-POM | [MnIIMnIIISiW10O37(OH)(H2O)]6− | 1 | 1 | 0 | 2 |
Mn4-POM | [MnII3MnIII(H2O)2(PW9O34)2]9− | 3 | 1 | 0 | 4 |
Mn6-POM-1 | [MnII4MnIII2Ge3W24O94(H2O)2]18− | 4 | 2 | 0 | 6 |
Mn6-POM-4 | [MnIII2MnII4(μ3-O)2(H2O)4(B-β-SiW8O31)(B-β-SiW9O34)(γ-SiW10O36)]18− | 4 | 2 | 0 | 6 |
Mn14-POM | [{MnIII3MnIV4O4(OH)2(OH2)}2(W6O22)(H2W8O32)2(H4W13O46)2]26− | 0 | 6 | 8 | 14 |
Mn19-POM | [MnII19 (OH)12(SiW10O37)6]34− | 19 | 0 | 0 | 19 |
MnxPOMs | Current Density (μA cm−2) E = 1.4 V | Current Density (μA cm−2) E = 1.5 V |
---|---|---|
Mn2-POM | 75.73 | 143.2 |
Mn4-POM | 72.93 | 143.4 |
Mn6-POM-1 | 40.57 | 111.87 |
Mn6-POM-4 | 46.69 | 160.2 |
Mn14-POM | 150.33 | 195.2 |
Mn19-POM | 102.6 | 173.07 |
MnxPOMs | Current Density (μA cm−2) E = 1.4 V | E (V)on |
---|---|---|
Mn2-POM | 36.31 | 1.28 |
Mn4-POM | 11.98 | 1.26 |
Mn6-POM-1 | 13.22 | 1.22 |
Mn6-POM-4 | 29.73 | 1.07 |
Mn14-POM | 250.97 | 0.92 |
Mn19-POM | 59.51 | 1.04 |
MnxPOMs | Current Density (μA cm−2) E = 1.5 V | Ref. |
---|---|---|
Mn16-Cs c | ca. 244.4 | [9] |
NaK-Mn4 b | ca. 83 | [10] |
Mn14-POM a | 479.2 | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Pei, J.; Yu, X.; Bi, L. Study on Catalytic Water Oxidation Properties of Polynuclear Manganese Containing Polyoxometalates. Catalysts 2022, 12, 160. https://doi.org/10.3390/catal12020160
Wu Y, Pei J, Yu X, Bi L. Study on Catalytic Water Oxidation Properties of Polynuclear Manganese Containing Polyoxometalates. Catalysts. 2022; 12(2):160. https://doi.org/10.3390/catal12020160
Chicago/Turabian StyleWu, Yue, Jianye Pei, Xiaoxia Yu, and Lihua Bi. 2022. "Study on Catalytic Water Oxidation Properties of Polynuclear Manganese Containing Polyoxometalates" Catalysts 12, no. 2: 160. https://doi.org/10.3390/catal12020160
APA StyleWu, Y., Pei, J., Yu, X., & Bi, L. (2022). Study on Catalytic Water Oxidation Properties of Polynuclear Manganese Containing Polyoxometalates. Catalysts, 12(2), 160. https://doi.org/10.3390/catal12020160